封面
版权信息
推荐序一
推荐序二
推荐序三
作者简介
前言
第1章 ODPS 概述
1.1 引言
1.2 初识ODPS
1.2.1 背景和挑战
1.2.2 为什么做ODPS
1.2.3 ODPS是什么
1.2.4 ODPS做什么
1.3 基本概念
1.3.1 账号(Account)
1.3.2 项目空间(Project)
1.3.3 表(Table)
1.3.4 分区(Partition)
1.3.5 任务(Task)、作业(Job)和作业实例(Instance)
1.3.6 资源(Resource)
1.4 应用开发模式
1.4.1 RESTful API
1.4.2 ODPS SDK
1.4.3 ODPS CLT
1.4.4 管理控制台
1.4.5 IDE
1.5 一些典型场景
1.5.1 阿里金融数据仓库
1.5.2 CNZZ数据仓库
1.5.3 支付宝账号影响力圈
1.5.4 阿里金融水文衍生算法
1.5.5 阿里妈妈广告CTR预估
1.6 现状和前景
1.7 小结
第2章 ODPS入门
2.1 准备工作
2.1.1 创建云账号
2.1.2 开通ODPS服务
2.2 使用管理控制台
2.3 配置ODPS客户端
2.3.1 下载和配置CLT
2.3.2 准备dual表
2.3.3 CLT运行模式
2.3.4 下载和配置dship
2.3.5 通过dship上传下载数据
2.4 网站日志分析实例
2.4.1 场景和数据说明
2.4.2 需求分析
2.4.3 数据准备
2.4.4 创建表并添加分区
2.4.5 数据解析和导入
2.4.6 数据加工
2.4.7 数据分析
2.4.8 自动化运行
2.4.9 应用数据集市
2.4.10 结果导出
2.4.11 结果展现
2.4.12 删除数据
2.4.13 解决方案:采云间
2.5 获取帮助
2.6 小结
第3章 收集海量数据
3.1 dship工具
3.2 收集Web日志
3.2.1 场景和需求说明
3.2.2 问题分析和设计
3.2.3 实现说明
3.2.4 进一步探讨
3.2.5 为什么这么难
3.2.6 解决方案:SLS
3.3 MySQL数据同步到ODPS
3.3.1 场景和需求说明
3.3.2 问题分析和实现
3.3.3 进一步探讨
3.4 下载结果表
3.5 小结
第4章 使用SQL处理海量数据
4.1 ODPS SQL是什么
4.2 入门示例
4.2.1 场景说明
4.2.2 简单的DDL操作
4.2.3 生成数据
4.2.4 单表查询
4.2.5 多表连接JOIN
4.2.6 高级查询
4.2.7 多表关联UNION ALL
4.2.8 多路输出(MULTI-INSERT)
4.3 网站日志分析
4.3.1 准备数据和表
4.3.2 维度表
4.3.3 访问路径分析
4.3.4 TopK查询
4.3.5 IP黑名单
4.4 天猫品牌预测
4.4.1 主题说明和前期准备
4.4.2 理解数据
4.4.3 两个简单的实践
4.4.4 问题分析和算法设计
4.4.5 生成特征
4.4.6 抽取正负样本
4.4.7 生成模型
4.4.8 验证模型
4.4.9 预测结果
4.4.10 进一步探讨
4.5 小结
第5章 SQL进阶
5.1 UDF是什么
5.2 入门示例
5.3 实际应用案例
5.3.1 URL解码
5.3.2 简单的LBS应用
5.3.3 网站访问日志UserAgent解析
5.4 SQL实现原理
5.4.1 词法分析
5.4.2 语法分析
5.4.3 逻辑分析
5.4.4 物理分析
5.5 SQL调优
5.5.1 数据倾斜
5.5.2 一些优化建议
5.5.3 一些注意事项
5.6 小结
第6章 通过Tunnel迁移数据
6.1 ODPS Tunnel 是什么
6.2 入门示例
6.2.1 下载和配置
6.2.2 准备数据
6.2.3 上传数据
6.2.4 下载数据
6.3 Tunnel原理
6.3.1 数据如何传输
6.3.2 客户端和服务端如何交互
6.3.3 如何实现高并发
6.4 从Hadoop迁移到ODPS
6.4.1 问题分析
6.4.2 客户端实现和分析
6.4.3 Mapper实现和分析
6.4.4 编译和运行
6.4.5 进一步探讨
6.5 一些注意点
6.6 小结
第7章 使用MapReduce处理数据
7.1 MapReduce编程模型
7.2 MapReduce应用场景
7.3 初识ODPS MapReduce
7.4 入门示例
7.4.1 准备工作
7.4.2 问题分析
7.4.3 代码实现和分析
7.4.4 运行和输出分析
7.4.5 扩展:使用Combiner?
7.5 TopK查询
7.5.1 场景和数据说明
7.5.2 问题分析
7.5.3 具体实现分析
7.5.4 运行和结果输出
7.5.5 扩展:忽略Stop Words
7.5.6 扩展:数据和任务统计
7.5.7 扩展:MR2模型
7.6 SQL和MapReduce,用哪个?
7.7 小结
第8章MapReduce 进阶
8.1 再谈Shuffle & Sort
8.2 好友推荐
8.2.1 场景和数据说明
8.2.2 问题定义和分析
8.2.3 代码实现
8.3 LBS应用探讨:周边定位
8.3.1 场景和数据说明
8.3.2 问题定义和分析
8.3.3 代码实现和分析
8.3.4 运行和测试
8.4 MapReduce调试
8.4.1 带bug的代码
8.4.2 通过本地模式调试
8.4.3 通过Counter调试
8.4.4 通过log调试
8.5 一些注意事项
8.6 小结
第9章 机器学习算法
9.1 初识ODPS算法
9.2 入门示例
9.2.1 通过CLT统计分析
9.2.2 通过XLab统计分析
9.3 几个经典的算法
9.3.1 逻辑回归(Logistic Progression)
9.3.2 随机森林(Random Forest)
9.4 天猫品牌预测
9.4.1 逻辑回归
9.4.2 随机森林
9.4.3 脚本实现和自动化
9.4.4 进一步探讨
9.5 小结
第10章 使用SDK访问ODPS服务
10.1 主要的Package和接口
10.1.1 主要的Package
10.1.2 核心接口
10.2 入门示例
10.3 基于Eclipse插件开发
10.4 小结
第11章 ODPS权限、资源和数据管理
11.1 权限管理
11.1.1 账号授权
11.1.2 角色(Role)授权
11.1.3 ACL授权特点
11.1.4 简单的Policy授权
11.1.5 Role Policy
11.1.6 ACL授权和Policy授权小结
11.2 资源管理
11.2.1 Project内的资源管理
11.2.2 跨Project的资源共享
11.3 数据管理
11.3.1 表生命周期
11.3.2 数据归并(Merge)
11.3.3 跨Project数据同步
11.3.4 跨Project数据保护(Project Protection)
11.4 小结
第12章 深入了解ODPS
12.1 体系架构
12.1.1 客户端
12.1.2 接入层
12.1.3 逻辑层
12.1.4 存储/计算层
12.2 执行流程
12.2.1 提交作业
12.2.2 运行作业
12.2.3 查询作业状态
12.2.4 执行逻辑图
12.3 底层数据存储
12.3.1 CFILE是什么
12.3.2 CFILE逻辑结构
12.4 内聚式框架
12.4.1 元数据
12.4.2 运维管理
12.4.3 多控制集群和多计算集群
12.5 跨集群复制
12.5.1 数据迁移
12.5.2 跨集群同步
12.6 小结
第13章 探索ODPS之美
13.1 R语言数据探索
13.1.1 安装和配置
13.1.2 一些基本操作
13.1.3 分析建模
13.2 实时流计算
13.3 图计算模型
13.4 准实时SQL
13.5 机器学习平台
附录 ODPS消息认证机制
后记
更新时间:2019-01-02 08:00:36