
会员
知识图谱导论
更新时间:2021-06-10 20:09:57 最新章节:9.7 总结
书籍简介
知识图谱的发展历史源远流长,从经典人工智能的核心命题——知识工程,到互联网时代的语义Web,再到当下很多领域构建的数千亿级别的现代知识图谱。知识图谱兼具人工智能、大数据和互联网的多重技术基因,是知识表示、表示学习、自然语言处理、图数据库和图计算等多个领域技术的综合集成。本书全面覆盖了知识图谱的表示、存储、获取、推理、融合、问答和分析等七大方面,一百多个基础知识点的内容,同时囊括多模态知识图谱、知识图谱与图神经网络的融合、本体表示学习、事理知识图谱,以及知识增强的语言预训练模型等新热点、新发展。作为一本导论性质的书,本书希望帮助初学者梳理知识图谱的基本知识点和关键技术要素,也希望帮助技术决策者建立知识图谱的整体视图和系统工程观,为前沿科研人员拓展创新视野和研究方向。本书在技术广度和深度上兼具极强的参考性,适合高等院校的计算机专业师生阅读,也可供计算机相关行业的管理者和研发人员参考。
上架时间:2021-02-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
陈华钧
最新上架
- 会员随着ChatGPT等人工智能和语言模型不断进步,了解这些技术的含义和潜在陷阱比以往任何时候都更加重要。作为享誉全球的跨技术和设计学科思想家,前田约翰利用他的丰富经验,为企业、产品设计师和决策者提供了可行的指导。通过深思熟虑和偶尔异想天开的例子,他构造了一个可以描述任何机器学习系统的关键功能的框架,并展望了可以如何使用它们来创造富有包容性和改变世界的产品。对任何想要深入了解机器如何“思考”以及未来可计算机9.6万字
- 会员本书着重阐述了深度学习时代的计算机视觉算法的工作原理,首先对深度学习与计算机视觉基础进行了介绍,之后对卷积神经网络结构的演化过程,以及基于深度学习的目标检测算法、图像分割算法、人体姿态估计算法、行人重识别与目标跟踪算法、人脸识别算法以及图像超分辨率重建方法进行了介绍。本书系统讲解了在日常生活和工作中常见的几项计算机视觉任务,并着重介绍了在当今深度学习时代,这些计算机视觉任务是如何工作的,可使读者快计算机9.9万字
- 会员作为一本技术性很强的书,《中国人形机器人创新发展报告2025》覆盖人工智能、大模型、视觉捕捉、自动化控制等一些列技术和学科。本书系统性梳理了《人形机器人创新发展指导意见》发布以来中国人形机器人产业在关键技术、产品培育、场景应用、生态营造、支撑能力以及保障措施等多方面的发展态势,通过多角度案例研究,全面解析了中国在这一领域的成果与经验,力图展示中国人形机器人产业的全貌,洞察人形机器人产业未来发展的新计算机9万字
- 会员本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用计算机8.1万字
- 会员本书共分为9章,内容涵盖三个层次:介绍与解读、入门学习、进阶提升。第1-2章介绍与剖析了ChatGPT与提示工程,并从多个学科的角度探讨了提示工程学科。第3-5章演示了ChatGPT的实际运用,教你如何使用ChatGPT解决自然语言处理问题,并为你提供了一套可操作、可重复的提示设计框架,让你能够熟练驾驭ChatGPT。第6-9章讲解了来自学术界的提示工程方法,以及如何围绕ChatGPT进行创新。计算机9.7万字
- 会员本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字
同类书籍最近更新
- 会员本书分“盛会”“趋势”“实践”“成果”“重庆”五章。“盛会”:对2020线上智博会的记录与介绍。突出对创新思想的记录,展现全球精英在智能化方向的思想演进。“趋势”:展望了智能产业的发展趋势。“实践”:“趋势”空中展开、“实践”具体落地,聚焦制造业、农业、城市建设、公共卫生等各种场景应用。“成果”:回到读者的身边,检视人工智能已经实现的成果,智能材料、工业互联、自动驾驶、智慧文旅、智慧防疫、智慧金融人工智能11.1万字
- 会员本书共16章。第1~10章介绍Python编程,涉及人工智能、基本描述统计、集中趋势和分散度量、模拟、静态和动态可视化、使用CSV文件、用于数据探索和数据整理的Pandas、时间序列和简单线性回归。第11~16章提供多种实践案例研究,涉及自然语言处理、Twitter数据挖掘、IBMWatson认知计算、包含分类和回归的有监督机器学习、聚类无监督机器学习、卷积神经网络深度学习、递归神经网络深度学习人工智能32.1万字
- 会员零基础读者应如何快速入门机器学习?数学基础薄弱的读者应如何理解机器学习中的数学原理?这些正是本书要解决的问题。本书从数学基础知识入手,通过前3章的介绍,帮助读者轻松复习机器学习涉及的数学知识;然后,通过第4-第13章的介绍,逐步讲解机器学习常见算法的相关知识,帮助读者快速入门机器学习;最后,通过第14章的综合实践,帮助读者回顾本书内容,进一步巩固所学知识。《机器学习的数学原理和算法实践》适合对机器人工智能13.5万字