普林斯顿计算机公开课(原书第2版)在线阅读
会员

普林斯顿计算机公开课(原书第2版)

(美)布莱恩·W.柯尼汉
开会员,本书免费读 >

计算机网络计算机理论、基础知识22.1万字

更新时间:2023-06-28 16:47:00 最新章节:封底

立即阅读
加书架
下载
听书

书籍简介

从1999年开始,作者在普林斯顿大学开设了一门名为“我们世界中的计算机”的课程(COS109:ComputersinOurWorld),这门课向非计算机专业的学生介绍计算机的基本常识,多年来大受学生追捧。本书就是基于这门课程的讲义编写而成的,书中不仅解释了计算机和通信系统的工作原理,还分析了新技术带来的隐私和安全问题。第2版的新增章节讨论了Python编程、人工智能、机器学习以及大数据等内容。本书适合所有希望了解数字世界的读者阅读,通过了解技术的工作原理、起源和未来发展趋势,更好地理解并改变我们身处的世界。
品牌:机械工业出版社
译者:戴开宇
上架时间:2023-04-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行

最新章节

(美)布莱恩·W.柯尼汉
主页

最新上架

  • 会员
    本书是作者多年在数据智能领域中利用机器学习实战经验的理解、归纳和总结。出于回归事物本质,规律性、系统性地思考问题理论为实践服务并且反过来充实理论,为更多人服务的想法和初心,本书系统地阐述了机器学习理论和工程方法论,并结合实际商业场景落地。全书分为3部分。第1部分是机器学习的数学理论理解,这部分不是对于机器学习数学理论的严谨推导和证明,更多是对于理论背后的到底是什么,为什么要这样做的通俗理解。尽可能
    叶新江编著计算机17.3万字
  • 会员
    《深度序列模型与自然语言处理:基于TensorFlow2实践》以自然语言和语音信号处理两大应用领域为载体,详细介绍深度学习中的各种常用序列模型。在讲述理论知识的同时辅以代码实现和讲解,帮助读者深入掌握相关知识技能。《深度序列模型与自然语言处理:基于TensorFlow2实践》共12章,不仅涵盖了词向量、循环神经网络、卷积神经网络、Transformer等基础知识,还囊括了注意力机制、序列到序列问题
    阮翀计算机21.9万字
  • 会员
    《Web3.0》针对当下火热的Web3.0话题,介绍Web3.0的相关专业知识、技术实现方法及应用前景。全书共9章,第1章介绍了Web3.0的基本知识;第2、3章介绍了Web3.0的基础技术栈和拓展技术栈;第4章介绍了Web3.0的生态构建,包括去中心化自治组织、开放式金融、加密货币、代币经济与数字市场、数字身份、创造者经济、注意力经济等;第5章阐述了Web3.0的行业应用;第6章介
    成生辉计算机13万字
  • 会员
    本书以网络安全为主线,对计算机网络安全所面对的各种威胁、表现形式、解决技术、应对方案等知识进行讲解,让读者全面掌握网络安全技术的应用方法和防范措施。全书共10章,内容包括计算机网络安全概述、网络模型中的安全体系、常用渗透手段及防范、病毒与木马的防范、加密与解密技术、局域网与网站安全、身份认证及访问控制、远程控制及代理技术、灾难恢复技术等。在正文讲解过程中,穿插了知识点拨注意事项动手练等板块,以助读
    钱慎一 徐明明编著计算机12.3万字
  • 会员
    《微课设计与制作标准教程(全彩微课版)》内容围绕微课制作展开,以实用高效为写作目的,用通俗易懂的语言对微课设计与制作的相关知识进行详细介绍。
    钱慎一 石月凤编著计算机6.6万字
  • 会员
    《UI设计基础与应用标准教程(全彩微课版)》围绕UI设计进行编写,以理论+实操为编写原则,用通俗易懂的语言对UI设计的相关知识进行详细介绍。《UI设计基础与应用标准教程(全彩微课版)》共9章,内容涵盖UI设计学习入门、图标设计、控件设计、动效设计、App界面设计、网页界面设计、软件界面设计、界面的标注与切图、综合实战案例等。在介绍理论知识的同时,穿插了大量的实操案例,第1~8章结尾还安排了实战演练
    魏砚雨 孙峰峰编著计算机6万字
  • 会员
    在区块链、人工智能、3D、AR等底层技术的支持下,Web3.0高速发展,获得了更多的关注。从Web1.0到Web3.0,互联网由中心化走向去中心化,由以平台为中心转向以用户为中心,经济由实体经济转向数字经济。可以说,Web3.0正在全方位赋能数字时代科技发展,重构商业模式。本书以Web3.0如何重构数字时代科技与商业新生态为切入点,面向互联网领域的创业者、从业者、企业家与投资人等。读者可以
    杨平 马振山 陈瀛洲计算机12.9万字
  • 会员
    本书源于斯坦福大学的相关课程,主要介绍不确定状态下的决策算法,涵盖基本的数学问题和求解算法。本书共分为五个部分:首先解决在单个时间点上简单决策的不确定性和目标的推理问题;然后介绍随机环境中的序列决策问题;接着讨论模型不确定性,包括基于模型的方法和无模型的方法;之后讨论状态不确定性,包括精确信念状态规划、离线信念状态规划、在线信念状态规划等;最后讨论多智能体系统,涉及多智能体推理和协作智能体等。本书
    (美)米凯尔·J.科申德弗 (美)蒂姆·A.惠勒 (美)凯尔·H.雷计算机25.7万字
  • 会员
    本书比较全面、系统地介绍了深度强化学习的理论和算法,并配有大量的案例和编程实现。全书核心内容可以分为3部分,第一部分为经典强化学习,包括第2、3、4章,主要内容有动态规划法,蒙特卡洛法、时序差分法;第二部分为深度强化学习,包括第6、7、8章,主要内容有值函数近似法、策略梯度法、策略梯度法进阶;第三部分重点介绍了深度强化学习的经典应用——AlphaGo系列算法。另外,作为理论和算法的辅助,第1章介绍
    龙强 章胜编著计算机12.5万字