Python强化学习:算法、核心技术与行业应用在线阅读
会员

Python强化学习:算法、核心技术与行业应用

(美)埃内斯·比尔金
开会员,本书免费读 >

计算机网络人工智能19.5万字

更新时间:2024-04-15 11:58:27 最新章节:文后

立即阅读
加书架
下载
听书

书籍简介

本书使用受现实世界商业和行业问题启发的实际示例来讲授强化学习技术的相关知识。本书分为四部分:第一部分涵盖强化学习的必要背景,包括定义、数学基础和强化学习解决方案的概述;第二部分深入介绍最先进的强化学习算法(规模化的深度Q-学习、基于策略的方法、基于模型的方法、多智能体强化学习等),包括每种算法的优缺点;第三部分介绍强化学习中的高级技术,包括机器教学、泛化和域随机化、元强化学习等主题,还涵盖强化学习中有助于改进模型的各种高级主题;第四部分讲解强化学习的各种应用,例如自主系统、供应链管理、营销和金融、智慧城市与网络安全等,并讨论强化学习领域的一些挑战及未来方向。学完本书,你将掌握如何训练和部署自己的强化学习智能体来解决强化学习问题。
品牌:机械工业出版社
译者:朱小虎等
上架时间:2023-10-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行

最新章节

(美)埃内斯·比尔金
主页

最新上架

  • 会员
    这是一本全方位讲解如何利用AI工具为HR赋能的著作,是AI时代HR提升职场竞争力的实战指南。作者基于深厚的HR管理经验和AI实战经验,通过科学的方法、高效的提示词、丰富的案例、清晰的步骤,细致地讲解了如何利用AI工具提高工作效率、优化管理流程、提升人才管理水平。从AIGC的基础知识到AI工具的使用,从AI在人力资源全生命周期所有场景中的应用到使用AI的风险防控,本书全面系统地讲解了HR需要掌握的全
    田政 谷燕燕 唐琨计算机20.6万字
  • 会员
    DeepSeek是一种基于Transformer架构的生成式AI(ArtificialIntelligence)大模型,融合了MoE架构、混合精度训练、分布式优化等先进技术,具备强大的文本生成、多模态处理和任务定制化能力。本书系统性地介绍了开源大模型DeepSeek-V3的核心技术及其在实际开发中的深度应用。全书分三部分共12章,涵盖理论解析、技术实现和应用实践。本书通过深度讲解与实用案例相结合
    未来智能实验室 代晶编著计算机17万字
  • 会员
    本书从技术、应用和产业3个维度为切入点,对智能语音语义领域相关的热点和趋势展开研究。本书以“人与机器的对话”开篇,讲述人类语音生成、传播和感知的过程,引发对于机器智能语音听说的思考,进而阐述技术探索发展史;然后,分析了以语音交互为核心的技术现状,综合剖析提出全双工、端到端模型构建、语音假冒攻击等热点;其次,从政策、投融资和产业规模上,分析整体智能语音产业环境,纵观国内外企业在相关技术和产品上的积极
    李荪 曾然然 殷治纲编著计算机13.6万字
  • 会员
    近年来,在自然语言处理领域,基于预训练语言模型的方法已形成全新范式。本书内容分为基础知识、预训练语言模型,以及实践与应用3个部分,共9章。第一部分全面、系统地介绍自然语言处理、神经网络和预训练语言模型的相关知识。第二部分介绍几种具有代表性的预训练语言模型的原理和机制(涉及注意力机制和Transformer模型),包括BERT及其变种,以及近年来发展迅猛的GPT和提示工程。第三部分介绍了基于Lang
    徐双双编著计算机12.7万字
  • 会员
    青少年人工智能编程水平测试涵盖从数学逻辑到计算思维、从拖曳程序模块到程序编写、从数学建模到算法设计等多学科知识,能够对学生的多学科知识综合运用能力做出评价;能够通过设计的具体解决方案,对学生的计算思维、创造性思维等能力做出评价;在具体的解决方案中,能够通过设计算法模型和实现算法,对学生掌握和运用编程的能力做出评价。本书将生活中的一些案例和程序算法相结合,深入浅出地为学生讲解不同进制之间的转换、函数
    高凯主编计算机3.9万字
  • 会员
    量子计算与人工智能的交叉融合,促使量子人工智能的不断发展。本书旨在采用对深度学习爱好者友好的方式,构建量子人工智能应用。全书共13章,第1章和第2章系统介绍量子计算机发展脉络和量子计算编程的基础知识。第3~7章分别介绍不同的深度学习方法和在这些算法逻辑上构建量子启发算法的方式,用量子线路中的相位作为神经网络的可学习参数,重构为量子神经网络算子。这些算子可以在PyTorch环境中直接调用。第8章和第
    金贤敏 胡俊杰编著计算机7.6万字
  • 会员
    机器学习是计算机科学与人工智能的重要分支领域.本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面.全书共16章,大致分为3个部分:第1部分(第1~3章)介绍机器学习的基础知识;第2部分(第4~10章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3部分(第11~16章)为进阶知识,内容涉及特征选择与稀疏学习、计算
    周志华计算机22.7万字
  • 会员
    本书共分为8章,涵盖了从数据分析基础知识、常见的统计学方法到使用ChatGPT进行数据准备、数据清洗、数据特征提取、数据可视化、回归分析与预测建模、分类与聚类分析,以及深度学习和大数据分析等全面的内容。
    朱宁计算机10.7万字
  • 会员
    本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用
    王杰计算机8.1万字