
会员
信息系统实证研究的20种重要理论与应用Ⅱ
计算机网络计算机理论、基础知识22.5万字
更新时间:2024-04-25 19:11:32 最新章节:内容简介
书籍简介
本书沿袭了前作《信息系统实证研究的20种重要理论与应用》的研究范式,以近30年关于实证研究的国内外期刊论文和学位论文作为主要研究对象,对信息系统实证研究的重要理论进行了系统梳理,在此基础上,详细论述了这些理论的源流演进,归纳总结出理论的应用现状,从而挖掘出理论在实证研究方面的应用展望。本书的内容特色在于:系统梳理信息系统实证研究的重要理论;详细论述信息系统实证研究理论的源流演进;全面总结信息系统实证研究理论的应用现状;深入展望信息系统实证研究理论的潜在方向。本书的学术创新与价值在于:本书在前作基础上继续系统梳理信息系统实证研究的重要理论,为信息系统实证研究的理论大厦添砖加瓦;本书较前作更加言简意赅,有助于读者快速抓住理论核心。
品牌:机械工业出版社
上架时间:2023-12-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
袁勤俭 杨雨娇 张一涵
同类热门书
最新上架
- 会员本书以理论为基础,以应用为导向,用大量的实例对Access数据库的应用进行全面讲解。全书共8章,主要内容包括数据库的基础知识、Access的基本操作、表的构建、查询的创建、窗体的设计、报表的设计、宏的自动化操作,以及数据库文件的管理。知识点覆盖《全国计算机等级考试二级Access数据库程序设计》考试大纲规定的内容。在介绍Access操作方法的同时,安排大量的动手练案例,并且穿插知识延伸小体例,理论计算机8.5万字
- 会员《UI设计基础与应用标准教程(全彩微课版)》围绕UI设计进行编写,以理论+实操为编写原则,用通俗易懂的语言对UI设计的相关知识进行详细介绍。《UI设计基础与应用标准教程(全彩微课版)》共9章,内容涵盖UI设计学习入门、图标设计、控件设计、动效设计、App界面设计、网页界面设计、软件界面设计、界面的标注与切图、综合实战案例等。在介绍理论知识的同时,穿插了大量的实操案例,第1~8章结尾还安排了实战演练计算机6万字
- 会员本书以SPSS28.0中文版为平台,以实用为原则,由浅入深,全面系统地介绍SPSS的基本功能和实际应用方法。本书涉及面广,从SPSS基本操作开始介绍,覆盖大部分常用功能和高级统计分析方法。本书共11章,内容包括SPSS基础知识、建立与整理数据、SPSS基本统计分析、假设检验、非参数检验、方差分析、相关分析、回归分析、聚类和判别分析、统计图形和SPSS数据分析综合应用。在介绍的过程中,图文并茂地对计算机10.2万字
- 会员本书是作者多年在数据智能领域中利用机器学习实战经验的理解、归纳和总结。出于回归事物本质,规律性、系统性地思考问题理论为实践服务并且反过来充实理论,为更多人服务的想法和初心,本书系统地阐述了机器学习理论和工程方法论,并结合实际商业场景落地。全书分为3部分。第1部分是机器学习的数学理论理解,这部分不是对于机器学习数学理论的严谨推导和证明,更多是对于理论背后的到底是什么,为什么要这样做的通俗理解。尽可能计算机17.3万字
- 会员《深度序列模型与自然语言处理:基于TensorFlow2实践》以自然语言和语音信号处理两大应用领域为载体,详细介绍深度学习中的各种常用序列模型。在讲述理论知识的同时辅以代码实现和讲解,帮助读者深入掌握相关知识技能。《深度序列模型与自然语言处理:基于TensorFlow2实践》共12章,不仅涵盖了词向量、循环神经网络、卷积神经网络、Transformer等基础知识,还囊括了注意力机制、序列到序列问题计算机21.9万字
- 会员本书系统的介绍了Vue框架基础、框架应用、生态组成、项目实战、框架演进、Vue原理剖析及Vue框架的原理实现。全书共分为8章:第1章为行业发展介绍,第2章为Vue2.x的开发基础,第3章为Vue2.x的组件开发,第4章为VueCLI开发完全指南,第5章为VueCLI项目实战,第6章为Vite+Vue3完全开发指南,第7章为Vue3.x项目实战,第8章为实现原理介绍。书中主要内容包括:W计算机13.9万字
- 会员本书以理论为基础,以应用为导向,用大量的实例对WPS文字处理、电子表格、演示文档三大板块进行全面讲解。全书共12章,主要内容包括WPS综合应用基础、PDF文件的查看及处理、常规文档的创建和编辑、长文档的高效编排、文档的校对与批量处理、WPS制表入门操作、公式与函数的应用、图形和图表的应用、对数据进行处理与分析、基本演示文稿的创建、动态交互式演示文稿的创建、演示文稿的放映与输出等。知识点全面覆盖《全计算机9.3万字
- 会员《细说机器学习:从理论到实践》从数学知识入手,详尽细致地阐述机器学习各方面的理论知识、常用算法与流行框架,并以大量代码示例进行实践。本书内容分为三篇:第一篇为基础知识,包括机器学习概述、开发环境和常用模块、特征工程、模型评估、降维方法等内容。本篇详细而友好地介绍机器学习的核心概念与原理,并结合大量示例帮助读者轻松入门。第二篇为算法应用,涵盖机器学习最重要与高频使用的模型,包括K-Means聚类、K计算机17.6万字