四、代数公式和相互间的关系
1. 移项
① a+b=c-d
a=(c-d)-b=c-d-b
b=(c-d)-a=c-d-a
c=(a+b)+d=a+b+d
d=c-(a+b)=c-a-b
2. 加减乘除
①(+a)+(+b)= +(a+b)=a+b
(+a)+(-b)= +(a-b)=a-b= -(b-a)
(+a)-(+b)=(+a)+(-b)=a-b
(+a)-(-b)=(+a)+(+b)=a+b
(-a)+(-b)= -(a+b)
(-a)+(+b)= -(a-b)= +(b-a)
(-a)-(-b)=(-a)+(+b)=b-a
(-a)-(+b)=(-a)+(-b)= -(a+b)
②(+a)(+b)= +ab=ab
(-a)(+b)= -ab
(+a)(-b)= -ab
(-a)(-b)= +ab=ab
(a+b)(c+d) =ac+bc+ad+bd
(a-b)(c+d) =ac-bc+ad-bd
(a+b)(c-d) =ac+bc-ad-bd
(a-b)(c-d) =ac-bc-ad+bd
③ a+0=a;a-0=a
3. 因式分解
(a+b)2 =a2 +2ab+b2 =(a-b)2 +4ab
(a-b)2 =a2 -2ab+b2
a2 +b2 =(a-b)2 +2ab
a2 -b2 =(a+b)(a-b)
(a+b+c)2 =a2 +b2 +c2 +2ab+2ac+2bc=(a+b)2 +2(a+b)c+c2
(a-b+c)2 =a2 +b2 +c2 -2ab+2ac-2bc
(a+b)3 =a3 +3a2 b+3ab2 +b3
(a-b)3 =a3 -3a2 b+3ab2 -b3
a3 +b3 =(a+b)(a2 -ab+b2)
a3 -b3 =(a-b)(a2 +ab+b2)
(a ± b)4 =a4 ± 4a3 b+6a2 b2 ± 4ab3 +b4
a4 +b4 =(a2 +b2 + 2ab)(a2 +b2 -2ab)
4. 一元二次方程式求根
ax2 +bx+c=0
5. 幂和根式
①(+a)2n= +a2n=a2n;(-a)2n= +a2n
(+a)2n+1 = +a2n+1;(-a)2n+1 = -a2n+1
(-1)2n= +1;(-1)2n+1 = -1
a1 =a;01 =0;1n=1;a0 =1
aman=am+n
(abc)n=anbncn
anbn=(ab)n