5.1 光在平板波导中的传播[2],[21],[40],[57~65]

平板波导是一种最简单、最基本的波导结构。本节将利用波动方程求解平板波导中的场分布;再利用波导的边界条件,获得波导的本征方程,即色散方程,进而讨论波导的传输特性。

5.1.1 三层平板波导

最简单的平面波导由薄膜、衬底、覆盖层三层平板介质构成,如图5.1-1所示。三层介质的折射率分别为n0n1n2,且n1>n2n0,薄膜厚度与波长同量级。衬底和覆盖层延伸至无穷远,且波导层的宽度远大于它的厚度。光波在这种平板波导中传输时,只在x方向受到限制。设该波导在y方向是均匀的,则有/∂y=0。在此条件下,麦克斯韦方程的解与y坐标无关,可写为

active=true
active=true

式中,β表示沿z方向传播单位距离变化的相位数,称为传播常数。

active=true

图5.1-1 平板波导结构

时谐电磁波的麦克斯韦方程组为

active=true
active=true

将式(5.1-1)代入式(5.1-2),计算后写成分量形式为

active=true
active=true
active=true

active=true
active=true
active=true

由此可见,麦克斯韦方程组可以分解为两组独立的方程组;其中一组方程的电磁场分量为EyHxH z,称为TE波,即电场平行膜层并垂直于波传播方向的模式;另一组包括ExHy和Ez,称为TM波,即磁场平行于膜层并垂直于波传播方向的模式。

将式(5.1-3a)、式(5.1-3b)代入式(5.1-3c)得

active=true

同样方法可得Hy满足

active=true

式中,k0=2π/λ为光在真空中的波数。

5.1.2 波导模式分析

在一定的边界条件下,通过求解方程(5.1-5)和方程(5.1-6),可以获得特定的电磁场分布,这种特定的电磁场分布就称为波导的模式。具有不同模式的光以各自不同的传播常数传播。

下面以平板波导为例来介绍几种波导的模式。

(1)当β>k0n1时,显然也有β>k0n2k0n0,方程(5.1-5)在各区域的解均为指数形式。另外,根据边界条件,Ey及其导数必须在边界上连续,因此解的指数形式要求光场在离开波导后将按指数形式趋于无限,如图5.1-2(a)所示。这种解没有物理意义。

(2)当k0n0<k0n2<β<k0n1时,方程(5.1-5)在衬底和覆盖层区域的解均为指数衰减形式,而在波导层具有余弦或正弦形式,并且在各边界两边,两种解满足边界连续性条件。由于这种解对应的光场能量被限制在波导层及其附近区域,因此光受到约束在波导内传播,这种模称为束缚模或导模,如图5.1-2(b)和(c)所示。

(3)当k0n0<β<k0n2<k0n1时,方程(5.1-5)在覆盖层区域的解为指数衰减形式,而在衬底和波导层具有余弦或正弦形式。这种解对应的模式称为衬底辐射模,如图5.1-2(d)所示。

(4)当β<k0n0<k0n2<k0n1时,方程(5.1-5)在各区域的解均为余弦或正弦形式。该解对应的模式称为辐射模或包层模,如图5.1-2(e)所示。

下面对平板波导的TE模式和TM模式进行分析。

5.1.3 TE导模

导模的传播常数满足,方程(5.1-5)的解为

active=true
active=true

图5.1-2 平板波导的模式

式中,ABCD为待定常数,pq分别为覆盖层和衬底中导波的振幅衰减系数,k1x为波导层中导波的横向传播常数,将式(5.1-7)代入式(5.1-5)可得

active=true
active=true
active=true

利用x=0和x=-h处,Ey的连续条件得到

active=true
active=true

利用x=0处,Hz∂Ey/∂x的连续条件得到

active=true

联立式(5.1-9)和式(5.1-11),得到

active=true
active=true

active=true

于是可以将式(5.1-7)写成

active=true

利用x=-h处,Hz∂Ey/∂x的连续条件得到

active=true

active=true

active=true

式(5.1-18)称为本征方程。由于k0pqβ的函数,当n0n1n2hk0确定后,通过求解本征方程可以得到模式本征值。

5.1.4 TM导模

TM导模的形式与式(5.1-7)相似,可以写成

active=true

利用x=0和x=-h处,Hy的连续条件得到

active=true
active=true

Hy求得Ez

active=true

利用x=0处,Ez的连续条件得到

active=true

于是

active=true
active=true

active=true

将式(5.1-19)写成

active=true

利用x=-h处,Ez的连续条件得到

active=true

active=true

因此

active=true

式(5.1-30)称为TM模的本征方程。

5.1.5 波导的归一化参数

上面得到TE模和TM模的本征方程,分别为

active=true
active=true

式中

active=true
active=true
active=true

因为βz方向的传播常数,故

active=true

显然β是一些分立的值,且介于衬底和薄膜的传播常数之间,即

active=true

定义波导的有效折射率N

active=true

通常也称N为模折射率,它介于衬底折射率和薄膜折射率之间,即

active=true

为了更清楚地了解波导的色散特性,可将本征方程写成归一化形式。引入几个与波导参数有关的归一化量,即归一化频率V、归一化折射率b,以及波导非对称量aEaM,它们的定义依次为

active=true
active=true
active=true
active=true

将上述各量代入本征方程可得

active=true

式中,η12η10定义为

active=true

对式(5.1-39)进行数值计算后可作出各导模传播常数β与归一化频率V的关系曲线,即色散曲线。由于归一化色散曲线可以根据本征方程利用数值计算得到,因此本征方程又叫色散方程。图5.1-3所示为平板波导的色散曲线。图中,ωc0ωc1,ωc2分别是m为0,1,2三个导模的截止频率。β值的下限是n2k,上限是n1k。当ω(或h)增加时,波导能传输的导模数也增加。β>n1k是不可能的,所以这一区域称为禁止区。而β<n2k,不满足全反射条件导波截止,只能以辐射模方式传输。辐射模是连续谱。由图还看出,导模的频率一定,模阶数越低,传播常数越大。

active=true

图5.1-3 平板波导TE模的ω-β图

5.1.6 截止频率和模式数量

根据前面分析,在波导中存在导模的条件为k0n2<β<k0n1。当βn2k0 时,衬底中的场分布将由原来的指数衰减形式转化成正弦或余弦振荡形式,即由原来的隐失波变成行波。在这种情况下,能量将从衬底中泄漏,导致该模不能在这种波导中传播。因此可以将导模截止条件定义为

active=true

显然,此时有b=0。将截止条件应用于色散方程(5.1-39),得到m阶导模的截止频率为

active=true

因为

active=true

如果将导模截止时的波长称为截止波长,记为λc,则m阶导模的截止波长为

active=true

波导内能传播的TE模或TM模的个数为

active=true

符号[]imf表示取大于这个括号内数值的最小整数。因为η10>1,所以TM模式数总是小于TE模式数。波导能传播的导模总数等于TE模式和TM模式数量之和。

5.1.7 导模携带的功率和波导的有效厚度

导模在单位宽度(y方向)上携带的功率等于

active=true

式中,Sz为坡印廷矢量z分量的时间平均值,对于TE模,则有

active=true

将式(5.1-15)、式(5.1-3a)代入式(5.1-46),并分三个区域积分,得到TE模在覆盖层、薄膜、衬底中的功率分别为

active=true

在计算P1P2时,利用了式(5.1-9)、式(5.1-10)中AB的关系及本征方程式(5.1-28)。波导传输的TE模总功率为

active=true

其中

active=true

he f为波导芯层的有效厚度。式(5.1-48)表明,振幅系数可用导模的功率P表示,即

active=true
active=true

如果定义波导的限制因子Γ=P1/P,则

active=true

对于TM模,有,所以

active=true

将式(5.1-27)代入式(5.1-52),分区域积分得TM导模携带的功率为

active=true

TM模芯层的有效厚度hef

active=true

式(5.1-53)表明,振幅系数C可用导模的功率P表示。由Ez在边界上的连续条件可知D 2=,因此D也可用P表示。

5.1.8 模式的正交性和完备性

在数学上,传播常数称为本征值,导模和辐射模的电磁场分布为本征函数,因此将导模和辐射模称为本征模。下面将讨论光在理想波导中传播时,波导本征模的正交性和完备性。这里所谓的理想波导是指折射率沿纵向分布相同,沿横向分布具有波导结构特征,并且波导介质没有吸收损耗。

1.正交性

在无源介质中,频率为ω的时谐电磁波满足麦克斯韦方程,即

active=true
active=true

在没有吸收或增益的介质中,介电常数为实数,对上式取共轭可得

active=true
active=true

E1H1E2H2分别为满足麦克斯韦方程组的两个线性独立解所对应的场。将E1H1E2H2分别应用于式(5.1-55)和式(5.1-56),并引入矢量A,令

active=true

在无损介质中,折射率n(或)为实数,即n=n*。容易验证,矢量A的散度为零,即

active=true

E1H1E2H2分别为波导的两个模式lm,并设

active=true
active=true
active=true
active=true

将上式代入式(5.1-58)可得

active=true

式中,下标“Tz”分别表示场的横向分量和纵向分量。对上式在xy平面进行面积分可得

active=true

式中,dσ为面元,线积分路径C为等式左边面积分区域Σ的边界。此处,区域Σ可取为整个xy平面。当lm都为导模或两者之一为导模时,由于导模在无限远处的场为零,因此上式中的环路积分为零,于是有

active=true

事实上,当lm都为辐射模时,上式仍然成立。当lm时,一般βlβm,因此有

active=true

也可以将上式写成

active=true

上式对波导所有的本征模都成立。波导的本征模既包括沿z方向传播的行波,也包括沿-z方向传播的反射波。沿z方向的行波和沿-z方向的反射波之间各量对应关系为

active=true

将-lm阶模应用于式(5.1-64),并利用式(5.1-65)可得

active=true

将式(5.1-64)与式(5.1-66)相加可得

active=true

l=m时,则有

active=true

以上讨论了本征模的正交性。为方便起见,可以将本征模的正交性统一表示为

active=true

2.完备性

根据严格的偏微分方程理论可以证明,理想波导的本征模函数系不仅满足正交性,还具有完备性,即所有导波模和辐射模函数构成正交完备系。因此,任何在波导结构中实际存在的电磁场分布均可表示为一组离散的导波模式和具有连续谱的辐射模式的叠加,即

active=true
active=true

由于本征模是电场和磁场的组合,因此电场和磁场的展开系数相同。在上式中,第一项表示导模的贡献。由于导模是离散的,因此导模的叠加表示成求和形式。第二项则表示辐射模的贡献。辐射模具有连续谱分布,辐射模叠加表示为积分形式。式(5.1-70)中,积分变量κ

active=true

这里传播常数β可以取正值或负值,分别对应沿z轴或-z轴传播的模式。展开式中各项系数由正交性条件决定,即

active=true

由此可见,入射到光波导的光波将分解为不同的本征模进行传播。其中展开项中为导模的分量可以在波导中无损耗地传播到出射端,而辐射模分量将在传播过程中从波导结构中辐射出去,一般不能传播到出射端。辐射模分量携带的光功率将产生能量损耗,这部分损耗称为入射端的耦合损耗。

由式(5.1-69)和式(5.1-70)可以得到

active=true

式中,。式(5.1-73)左边表示入射的总功率,右边表示各模式功率之和。在理想波导中,各模彼此独立传播,互不干扰,各模之间没有能量交换或耦合。