1.4.3 测量误差及分析

每一个物理量都是客观存在,在一定的条件下具有不依人的意志为转移的客观大小,人们将它称为该物理量的真值。进行测量是想要获得待测量的真值。然而,测量要依据一定的理论或方法,使用一定的仪器,在一定的环境中,由具体的人进行。由于实验理论上存在着近似性,方法上难以很完善,实验仪器灵敏度和分辨能力有局限性,周围环境不稳定等因素的影响,待测量的真值是不可能测得的,测量结果和被测量真值之间总会存在或多或少的偏差,这种偏差就叫做测量值的误差。

1.误差来源

测量工作是在一定条件下进行的,外界环境、观测者的技术水平和仪器本身构造的不完善等原因,都可能导致测量误差的产生。通常把测量仪器、观测者的技术水平和外界环境三个方面综合起来,称为观测条件。观测条件不理想和不断变化,是产生测量误差的根本原因。通常把观测条件相同的各次观测,称为等精度观测;观测条件不同的各次观测,称为不等精度观测。

具体来说,测量误差主要来自以下三个方面:

(1)外界条件。主要指观测环境中气温、气压、空气湿度和清晰度、风力以及大气折光等因素的不断变化,导致测量结果中带有误差。

(2)仪器条件。仪器在加工和装配等工艺过程中,不能保证仪器的结构能满足各种几何关系,这样的仪器必然会给测量带来误差。

(3)观测者的自身条件。由于观测者感官鉴别能力所限以及技术熟练程度不同,也会在仪器对中、整平和瞄准等方面产生误差。

2.误差分类

测量误差按其对测量结果影响的性质,可分为系统误差和偶然误差。

(1)系统误差:在相同的观测条件下,对某量进行了n次观测,如果误差出现的大小和符号均相同或按一定的规律变化,这种误差称为系统误差。系统误差一般具有累积性。

系统误差产生的主要原因之一,是由于仪器设备制造不完善。例如,用一把名义长度为50m的钢尺去量距,经检定钢尺的实际长度为50.005 m,则每量一次,就带有+0.005 m的误差(“+”表示在所量距离值中应加上),丈量的尺段越多,所产生的误差越大。所以这种误差与所丈量的距离成正比。

系统误差具有明显的规律性和累积性,对测量结果的影响很大。但是由于系统误差的大小和符号有一定的规律,所以可以采取措施加以消除或减少其影响。

(2)偶然误差:在相同的观测条件下,对某量进行了n次观测,如果误差出现的大小和符号均不一定,则这种误差称为偶然误差,又称为随机误差。例如,用经纬仪测角时的照准误差,钢尺量距时的读数误差等,都属于偶然误差。

偶然误差,就其个别值而言,在观测前我们确实不能预知其出现的大小和符号。但若在一定的观测条件下,对某量进行多次观测,其误差呈现出一定的规律性,称它为统计规律。而且,随着观测次数的增加,偶然误差的规律性表现得更加明显。

3.误差影响

除了被测的量以外,凡是对测量结果有影响的量,即测量系统输入信号中的非信息性参量,都称为影响量。电子测量中的影响量较多而且复杂,影响通常不可忽略。环境温度和湿度、电源电压的起伏和电磁干扰等属外界影响量。噪声、非线性特性和漂移等属内部影响量。影响量往往随时间而变,而且这种变化通常具有非平稳随机过程的性质。不过,这种非平稳性大都表现为数学期望的慢变化。此外,在测量仪器中,若某一工作特性会影响到另一工作特性,则称前者为影响特性。影响特性也能导致测量误差。例如,交流电压表中检波器的检波特性,对测量不同波形和不同频率的电压会产生不同的测量误差。

在电子测量和计量中,上述各种情况都较为明显,而且许多随机性系统误差的概率密度分布是非正态的(如截尾正态分布、矩形均匀分布、三角形分布、梯形分布、M形分布、U形分布和瑞利分布等),甚至分布律不明。这些都给电子测量误差的处理和估计带来许多特殊困难。

4.误差处理

随机误差处理的基本方法是概率统计方法。处理的前提是系统误差可以忽略不计,或者其影响事先已被排除或事后肯定可以排除。一般认为,随机误差是无数未知因素对测量产生影响的结果,所以是正态分布的,这是概率论的中心极限定理的必然结果。

减小误差的方法通常是选用精密的测量仪器或进行多次测量取平均值。