第2讲 膨胀的宇宙

银河系是一个庞大的恒星系统,而我们的太阳以及邻近的恒星全都是银河系的组成部分。长期以来,人们一直以为银河系就是整个宇宙。只是到了1924年,美国天文学家埃德温·哈勃才证实我们的星系并不是独一无二的。事实上,还存在着许许多多其他的星系,而在星系之间则是广袤的虚无空间。为了证明这一点,哈勃必须确定这些河外星系的距离。我们可以确定邻近恒星的距离,办法是观测它们因地球绕太阳运动而引起的位置变化。但是,河外星系实在是太过遥远了,这与近距离恒星的情况不同,它们看上去完全固定不动。因此,哈勃只能通过间接的方法来测量它们的距离。

须知,恒星的视亮度取决于两个因素:光度,以及它离我们有多远。对于近距离恒星来说,我们可以测得它们的视亮度和距离,于是便能确定它们的光度。相反,要是我们知道了其他星系中一些恒星的光度,就可以通过测定它们的视亮度来推算出它们的距离。哈勃论证了存在某些类型的恒星,当它们距离我们近得足以被我们测量时,它们有相同的光度。于是,如在另一个星系中发现了同类恒星,我们就可以设想它们有着同样的光度。这样一来,便可以计算出那个星系的距离。如果可以对同一个星系中的若干颗恒星实施此类计算,并总是得出相同的距离,那么对星系距离的估计就相当可信了。通过这条途径,哈勃得到了九个不同星系的距离。

现在我们知道,利用现代望远镜可以观测到数千亿个星系,银河系只是其中之一,而每个星系又含有数千亿颗恒星。我们生活在一个缓慢自转中的星系之内,尺度约为10万光年;它有若干条旋臂旋臂:旋涡星系和棒旋星系中从星系核区或棒结构两端伸出的螺线形带状结构,主要由年轻亮星和星际介质构成。,旋臂中的恒星绕着星系中心作轨道运动,大约每一亿年转过一周太阳绕银河系中心转动一周约需两亿多年。。我们的太阳只不过是一颗中等大小的普通黄色恒星,它位于其中一条旋臂的外边缘。毫无疑问,自亚里士多德和托勒密以来我们经历了漫长的认识之路,而在他们那个年代地球被认为位于宇宙的中心。

恒星的距离实在是太远了,以至于看上去它们只是一些非常小的光点。我们不可能确定恒星的大小和形状。那么,怎样才能把不同类型的恒星区分开来呢?对于绝大多数恒星来说,唯一可以观测到,且不致发生误判的特征是它们的光的颜色。牛顿发现,如果使太阳光穿过一块棱镜,光线便会分解成构成阳光组成成分的各种颜色——太阳光谱,它看上去就像彩虹一样。类似地,把望远镜瞄准个别恒星或者星系并准确聚焦,就可以观测到恒星或星系的光谱。不同的恒星有不同的光谱,但不同颜色的相对亮度,总是会与某个灼热燃烧物体发出的光线所呈现的情况完全一样。这意味着可以由恒星的光谱来确定恒星的温度。还有,我们发现有一些特定的颜色在恒星光谱中是缺失的,而且这类缺失的颜色可以因恒星的不同而不同。我们知道,每一种化学元素都会吸收掉一组能表征有相应元素存在的特定的颜色。因此,只要把每一组这样的颜色与恒星光谱中缺失了的那些颜色相比对,就可以严格确认在恒星大气中存在有哪些元素。

棒旋星系的旋臂

20世纪20年代,当天文学家开始观察河外星系中恒星的光谱时,异常情况发生了:它们所缺失的特征颜色组与我们的银河系中恒星的情况相同,但它们全都朝着光谱的红端移动,且相对位移量都一样。对此,唯一合理的解释是星系都在远离我们运动,因而星系光波的频率减小了,或者说发生了红移,其原因在于多普勒效应。请倾听一辆汽车在路上急驶而过的声音。当汽车由远方驶近时,汽车引擎声听起来音调比较高,相当于声波的频率比较高;当汽车由近处向远方驶离时,引擎声的音调听起来比较低。光波或辐射波具有类似的变化特性。实际上,警察正是利用多普勒效应,通过测定由汽车反射回来的无线电波脉冲的频率,来测出汽车的速度。

牛顿(1642—1727)

在证实了河外星系的存在之后,哈勃花了好多年时间来逐一记录星系的距离,同时还观测它们的光谱。在那个时候,大多数人都以为星系的运动是完全随机的,所以光谱呈现蓝移的星系应该与呈现红移的星系一样多。因此,当哈勃发现所有的星系都表现为有红移时,人们颇感意外,这说明每一个星系都在远离我们而去。更令人吃惊的是,哈勃在1929年发表的结果表明,甚至星系红移的大小也不是随机的,红移量居然与星系的距离成正比。换言之,星系越远,远离我们的速度就越快。因而,这意味着宇宙不可能如之前众人都猜想的那样是静态的,而是宇宙事实上正处于膨胀之中。在任何时刻,不同星系间的距离一直在不断地增大。

发现宇宙正在膨胀,乃是20世纪一项伟大的理性革命。事后来看,不禁让人惊讶为什么之前没有一个人想到这一点。牛顿等人应该会意识到,在引力的作用下一个静态宇宙很快会开始收缩。但是,请设想一下宇宙并不处于静止状态,而是正在膨胀。如果宇宙膨胀得不太快,那么引力的作用最终会使膨胀停止,并随之开始收缩。然而,要是膨胀速度超过某个确定的临界值,而引力作用不足以使膨胀停止,则宇宙便会一直不断地永远膨胀下去。这有点像我们在地球表面给火箭点火,使其上升时所发生的情况。如果火箭的速度比较慢,那么引力最终会使火箭停止运动,并随之开始向地面回落。要是火箭的速度大于某个临界值(约为每秒7英里即每秒11.2公里,也就是第二宇宙速度。),引力便不足以把它拉回地面,于是火箭便会越飞越远,永远脱离地球。

在19世纪、18世纪,甚至17世纪晚期这段时间内的任何时候,都已经可以做到根据牛顿的引力理论来预言宇宙的上述变化特性。但是,人们关于静态宇宙的信念实在是太强了,这种信念一直延续到20世纪初。即使爱因斯坦在1915年系统地阐明了广义相对论之时,他还是深信宇宙只能处于静止状态。因此,为了使静态宇宙成为可能,爱因斯坦对自己的理论做了修正,具体做法是在他的一些方程中引入了一个所谓的宇宙学常数宇宙学常数:爱因斯坦在建立他的“静止、有界、无限”宇宙模型时,人为引入的一个数值很小的常数。。这是一类新的“反引力”之力,与其他作用力的不同之处在于,这种力并非来自任何具体的力源,而是时空结构自身的组成部分。爱因斯坦的宇宙学常数给时空以某种固有的膨胀趋势,而且恰好可以与宇宙中全部物质的吸引力相平衡,这样一来自然会得出静态宇宙的结论。

看来,只有一个人愿意还广义相对论以其本来面目。尽管爱因斯坦和其他一些物理学家在不断探究各种途径,以能回避广义相对论所预言的非静态宇宙,俄国物理学家亚历山大·弗里德曼却与众不同地着手解释非静态宇宙。