- 生成对抗网络入门指南
- 史丹青
- 624字
- 2023-07-20 18:32:03
前言
生成对抗网络(GAN)毫无疑问是当下热门的人工智能技术之一,被美国《麻省理工科技评论》评为2018年“全球十大突破性技术”。从2014年至今,与GAN有关的论文数量急速上升,网络上有人整理了近年来的GAN模型,截至2018年2月已经有超过350个不同形态的变种,并且数量仍然在持续增加中。在图像生成模型的质量上,生成对抗网络技术可以说实现了飞跃,很多衍生模型已经在一定程度上解决了特定场景中的图像生成问题。此外,诸如文本到图像的生成、图像到图像的生成等应用研究也让工业界与学术界都非常“兴奋”,为人工智能行业带来了非常多的可能性。
目前网络上关于生成对抗网络的介绍林林总总,越来越多的人对它的出现感到好奇,想知道计算机是如何通过博弈的方法来进行自我优化的。我也曾在知乎上写过一篇介绍性文章,但写完之后总觉得不够尽兴,希望有机会把这个领域相对完整的知识体系呈现在初学者面前,并帮助那些对人工智能技术感兴趣的朋友,让他们尽量少走一些弯路,更直观地了解这个前沿的新兴领域。
本书面向机器学习从业人员、高校相关专业学生以及具备一定基础的人工智能领域爱好者,书中包含了生成对抗网络的理论知识与项目实践。通过本书的学习,读者可理解生成对抗网络的技术原理,并通过书中的代码实例了解技术细节。本书尽量避免出现需要高性能计算设备才可以运行的项目,希望读者在感受到生成对抗网络的魅力之后,有机会在自己的设备上尝试运行一些项目。只有通过不断实践,才能真正理解生成对抗网络,并将其应用到自己的学习与工作中。