参考文献
[1] Hertel T, Walkup R E, Avouris P. Deformation of carbon nanotubes by surface van der Waals forces. Phys Rev B, 1998, 58(20): 13870-13873.
[2] Guanghua G, Tahir C, William A G Ⅲ. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnol, 1998, 9(3): 184.
[3] Dresselhaus M S, Eklund P C. Phonons in carbon nanotubes. Adv Phys, 2000. 49(6): 705-814.
[4] Dresselhaus M S, Dresselhaus G, Jorio A. Unusual properties and structure of carbon nanotubes. Annu Rev Mater Res, 2004, 34(1): 247-278.
[5] Henning T, Salama F. Carbon in the Universe. Science, 1998, 282(5397): 2204-2210.
[6] Hiura H, et al. Role of sp3 defect structures in graphite and carbon nanotubes. Nature, 1994, 367(6459): 148-151.
[7] Smalley. 研究小组网上图片. http://cnst.rice.edu/pics.html.
[8] Crespi V H. Relations between global and local topology in multiple nanotube junctions. Phys Rev B, 1998, 58(19): 12671-12671.
[9] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56-58.
[10] Zhou O, et al. Defects in carbon nanostructures. Science, 1994, 263(5154): 1744-1747.
[11] Amelinckx S, et al. A structure model and growth mechanism for multishell carbon nanotubes. Science, 1995, 267(5202): 1334-1338.
[12] Amelinckx S, Lucas A, Lambin P. Electron diffraction and microscopy of nanotubes. Rep Prog Phys, 1999, 62(11): 1471.
[13] Kiang C H, et al. Size effects in carbon nanotubes. Phys Rev Lett, 1998, 81(9): 1869-1872.
[14] Charlier J C, Michenaud J P. Energetics of multilayered carbon tubules. Phys Rev Lett, 1993, 70(12): 1858-1861.
[15] Kwon Y K, et al. Morphology and stability of growing multiwall carbon nanotubes. Phys Rev Lett, 1997, 79(11): 2065-2068.
[16] Ebbesen T W. Carbon nanotubes. Phys Today, 1996, 49(6): 26-32.
[17] Chico L, et al. Pure Carbon nanoscale devices: nanotube heterojunctions. Phys Rev Lett, 1996, 76(6): 971-974.
[18] Dunlap B I. Connecting carbon tubules. Phys Rev B, 1992, 46(3): 1933-1936.
[19] 李峰. 有机物催化热解法制备单壁碳纳米管及其物理性能[D]. 沈阳:中国科学院金属研究所, 2001.
[20] Lijima S, Ichihashi T, Ando Y. Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature, 1992, 356(6372): 776-778.
[21] Li J, Papadopoulos C, Xu J. Nanoelectronics: growing Y-junction carbon nanotubes. Nature, 1999, 402(6759): 253-254.
[22] Tibbetts G G. Why are carbon filaments tubular? J Cryst Growth, 1984, 66(3): 632-638.
[23] Robertson D H, Brenner D W, Mintmire J W. Energetics of nanoscale graphitic tubules. Phys Rev B, 1992, 45(21): 12592-12595.
[24] Lucas A A, Lambin P H, Smalley R E. On the energetics of tubular fullerenes. J Phys Chem Solids, 1993, 54(5): 587-593.
[25] Hamada N, Sawada S I, Oshiyama A. New one-dimensional conductors: graphitic microtubules. Phys Rev Lett, 1992, 68(10): 1579-1581.
[26] Ajayan P M, Lijima S. Smallest carbon nanotube. Nature, 1992, 358(6381): 23-23.
[27] Sun L F, et al. Materials: Creating the narrowest carbon nanotubes. Nature, 2000, 403(6768): 384-384.
[28] Qin L C, et al. Materials science: the smallest carbon nanotube. Nature, 2000, 408(6808): 50.
[29] Wang N, et al. Materials science: single-walled 4 A carbon nanotube arrays. Nature, 2000, 408(6808): 50-51.
[30] Peng L M, et al. Stability of carbon nanotubes: how small can they be? Phys Rev Lett, 2000, 85(15): 3249-3252.
[31] Ajayan P M, Ravikumar V, Charlier J C. Surface reconstructions and dimensional changes in single-walled carbon nanotubes. Phys Rev Lett, 1998, 81(7): 1437-1440.
[32] Terrones M, et al. Coalescence of single-walled carbon nanotubes. Science, 2000, 288(5469): 1226-1229.
[33] Saito R, et al. Electronic structure of chiral graphene tubules. Appl Phys Lett, 1992, 60(18): 2204-2206.
[34] Saito R, Dresselhaus G, Dresselhaus M S. Trigonal warping effect of carbon nanotubes. Phys Rev B, 2000, 61(4): 2981-2990.
[35] Wilder J W G, et al. Electronic structure of atomically resolved carbon nanotubes. Nature, 1998, 391(6662): 59-62.
[36] Avouris P, Chen Z, Perebeinos V. Carbon-based electronics. Nat Nanotechnol, 2007, 2(10): 605-615.
[37] Dresselhaus M S, et al. Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, 2002, 40(12): 2043-2061.
[38] Kataura H, et al. Optical properties of single-wall carbon nanotubes. Synth Met, 1999, 103(1-3): 2555-2558.
[39] Odom T W, et al. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998, 391(6662): 62-64.
[40] Javey A, et al. high-field quasiballistic transport in short carbon nanotubes. Phys Rev Lett, 2004, 92(10): 106804.
[41] Sun X, et al. Optical Properties of ultrashort semiconducting single-walled carbon nanotube Capsules Down to Sub-10 nm. J Am Chem Soc, 2008, 130(20): 6551-6555.
[42] Allen C S, et al. A review of methods for the accurate determination of the chiral indices of carbon nanotubes from electron diffraction patterns. Carbon, 2011, 49(15): 4961-4971.
[43] Damnjanović M, Vuković T, Milošević I. Diffraction from carbon nanotubes. Mater Sci Eng B, 2011, 176(6): 497-499.
[44] Zhu H, et al. Structural identification of single and double-walled carbon nanotubes by high-resolution transmission electron microscopy. Chem. Phys Lett, 2005, 412(1-3): 116-120.
[45] Liu Z, Qin L C. A direct method to determine the chiral indices of carbon nanotubes. Chem Phys Lett, 2005, 408(1-3): 75-79.
[46] Ouyang M, et al. Atomically resolved single-walled carbon nanotube intramolecular junctions. Science, 2001, 291(5501): 97-100.
[47] Kang L, et al. Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface. Nano Res, 2015, 8(11): 3694-3703.
[48] Strano M S, et al. Assignment of (n, m) raman and optical features of metallic single-walled carbon nanotubes. Nano Lett, 2003, 3(8): 1091-1096.
[49] Saito R, et al. Raman spectroscopy of graphene and carbon nanotubes. Adv Phys, 2011, 60(3): 413-550.
[50] Duesberg G S, et al. Polarized Raman spectroscopy on isolated single-wall carbon nanotubes. Phys Rev Lett, 2000. 85(25): 5436-5439.
[51] Rao A.M, et al. Diameter-selective raman scattering from vibrational modes in carbon nanotubes. Science, 1997, 275(5297): 187-191.
[52] Bandow S, et al. Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys Rev Lett, 1998, 80(17): 3779-3782.
[53] Henrard L, et al. van der Waals interaction in nanotube bundles: consequences on vibrational modes. Phys Rev B, 1999, 60(12): R8521-R8524.
[54] Milnera M, et al. Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes. Phys Rev Lett, 2000, 84(6): 1324-1327.
[55] Jorio A, et al. Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys Rev Lett, 2001, 86(6): 1118-1121.
[56] Duesberg G S, et al, Experimental observation of individual single-wall nanotube species by Raman microscopy. Chem Phys Lett, 1999, 310(1-2): 8-14.
[57] Yang F, et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature, 2014, 510(7506): 522-524.
[58] Yang F, et al. Growing zigzag (16,0) carbon nanotubes with structure-defined catalysts. J Am Chem Soc, 2015, 137(27): 8688–8691.
[59] Thess A, et al. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273(5274): 483-487.
[60] Kahn D, Lu J P. Vibrational modes of carbon nanotubes and nanoropes. Phys Rev B, 1999, 60(9): 6535-6540.
[61] Cheng H M, et al. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem Phys Lett, 1998, 289(5-6): 602-610.
[62] Alvarez L, et al. Resonant Raman study of the structure and electronic properties of single-wall carbon nanotubes. Chem Phys Lett, 2000, 316(3-4): 186-190.
[63] 张莹莹,张锦. 共振增强拉曼光谱技术在单壁碳纳米管表征中的应用. 化学学报, 2012, 70(22): 2293-2305.
[64] Li J C, et al. Growth of metal-catalyst-free nitrogen-doped metallic single-wall carbon nanotubes. Nanoscale, 2014, 6(20): 12065-12070.
[65] Bachilo S M, et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 2002, 298(5602): 2361-2366.
[66] Fantini C, et al. Optical transition energies for carbon nanotubes from resonant raman spectroscopy: environment and temperature effects. Phys Rev Lett, 2004, 93(14): 147406.
[67] Dresselhaus M S, et al. Raman spectroscopy of carbon nanotubes. Phys Rep, 2005, 409(2): 47-99.
[68] Liu Z, Zhang J, Gao B. Raman spectroscopy of strained single-walled carbon nanotubes. Chem Commun, 2009(45): 6902-6918.
[69] Song L, et al. Temperature dependence of Raman spectra in single-walled carbon nanotube rings. Appl Phys Lett, 2008. 92(12): 121905.
[70] Qingwei L, et al. Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method. Nanotechnol, 2009, 20(14): 145702.
[71] Chou S G, et al. Optical characterization of DNA-wrapped carbon nanotube hybrids. Chem Phys Lett, 2004, 397(4-6): 296-301.
[72] Strano M S, et al. Reversible, band-gap-selective protonation of single-walled carbon nanotubes in solution. J Phys Chem B, 2003, 107(29): 6979-6985.
[73] Itkis M E, et al. Purity evaluation of as-prepared single-walled carbon nanotube soot by use of solution-phase near-ir spectroscopy. Nano Lett, 2003, 3(3): 309-314.
[74] Strano M S, et al. Electronic structure control of single-walled carbon nanotube functionalization. Science, 2003, 301(5639): 1519-1522.
[75] Belin T F. Epron, Characterization methods of carbon nanotubes: a review. Mater Sci Eng B, 2005, 119(2): 105-118.
[76] Miyata Y, et al. Optical evaluation of the metal-to-semiconductor ratio of single-wall carbon nanotubes. J Phys Chem C, 2008, 112(34): 13187-13191.
[77] O’Connell M J, et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 2002, 297(5581): 593-596.
[78] Zheng M, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater, 2003, 2(5): 338-342.
[79] Nair N, et al. Estimation of the (n, m) concentration distribution of single-walled carbon nanotubes from photoabsorption spectra. Anal Chem, 2006, 78(22): 7689-7696.
[80] Lolli G, et al. Tailoring (n, m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of como catalysts. J Phys Chem B, 2006, 110(5): 2108-2115.
[81] He M, et al. Predominant (6,5) single-walled carbon nanotube growth on a copper-promoted iron catalyst. J Am Chem Soc, 2010, 132(40): 13994-13996.
[82] Wang H, et al. Selective synthesis of (9,8) single walled carbon nanotubes on cobalt incorporated TUD-1 catalysts. J Am Chem Soc, 2010, 132(47): 16747-16749.
[83] Weisman R B, Bachilo S M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical kataura plot. Nano Lett, 2003, 3(9): 1235-1238.
[84] Tu X, et al. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature, 2009, 460(7252): 250-253.
[85] Ghosh S, Bachilo S M, Weisman R B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat Nanotechnol, 2010, 5(6): 443-450.
[86] Niyogi S, Densmore C G, Doorn S K. Electrolyte tuning of surfactant interfacial behavior for enhanced density-based separations of single-walled carbon nanotubes. J Am Chem Soc, 2009, 131(3): 1144-1153.
[87] Yu B, et al. Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. J Am Chem Soc, 2011, 133(14): 5232-5235.
[88] Li W S, et al. High-quality, highly concentrated semiconducting single-wall carbon nanotubes for use in field effect transistors and biosensors. ACS Nano, 2013, 7(8): 6831-6839.
[89] Huang L, et al. A generalized method for evaluating the metallic-to-semiconducting ratio of separated single-walled carbon nanotubes by UV-Vis-NIR characterization. J Phys Chem C, 2010, 114(28): 12095-12098.
[90] Takeshi T, et al. Continuous separation of metallic and semiconducting carbon nanotubes using agarose gel. Appl Phys Express, 2009, 2(12): 125002.
[91] Tanaka T, et al. Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett, 2009, 9(4): 1497-1500.
[92] Hou P X, et al. Preparation of metallic single-wall carbon nanotubes by selective etching. ACS Nano, 2014, 8(7): 7156-7162.
[93] Chiang I W, et al. Purification and characterization of single-wall carbon nanotubes (swnts) obtained from the gas-phase decomposition of CO (HiPco process). J Phys Chem B, 2001, 105(35): 8297-8301.
[94] Wang J, Li Y. Selective band structure modulation of single-walled carbon nanotubes in ionic liquids. J Am Chem Soc, 2009, 131(15): 5364-5365.
[95] 檀付瑞,等. 单壁碳纳米管分子光谱表征及应用的研究进展. 材料导报,2012, 26(21): 1-7.
[96] Li X. et al. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J Am Chem Soc, 2007, 129(51): 15770-15771.
[97] Ghorannevis Z, et al. Narrow-chirality distributed single-walled carbon nanotube growth from nonmagnetic catalyst. J Am Chem Soc, 2010, 132(28): 9570-9572.
[98] Liu H, et al. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun, 2011, 2: 309.
[99] O’Connell M J, Eibergen E E, Doorn S K. Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra. Nat Mater, 2005, 4(5): 412-418.
[100] Lain-Jong L, et al. Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium dodecyl sulfate, surfactin and polyvinylpyrrolidone. Nanotechnol, 2005, 16(5): S202.
[101] Iakoubovskii K, et al. Midgap luminescence centers in single-wall carbon nanotubes created by ultraviolet illumination. Appl Phys Lett, 2006, 89(17): 173108.
[102] Satishkumar B C, et al. Fluorescent single walled carbon nanotube/silica composite materials. ACS Nano, 2008, 2(11): 2283-2290.
[103] Wang D, Chen L. Temperature and pH-responsive single-walled carbon nanotube dispersions. Nano Lett, 2007, 7(6): 1480-1484.