第二章
了不起的原核生物

第一节
生命乍现

在上一章里,我们叙述了生命产生的“前期过程”,包括构成生命的元素和分子在宇宙中的形成、自我催化系统的出现、原始的细胞结构以及RNA作为生命最初分子的核糖核酸。从宇宙中数量极其巨大的行星和卫星的存在,我们可以预期生命的出现很可能是一个必然的现象,地球上生命的形成及其发展则提供了一个极好的例子。

生命的前期分子是在什么时候演变成为地球上最初的生命的?换句话说,地球上的生物是何时出现的?这个问题看似简单,回答起来却非常不容易。最初形成的生命一定非常微小,构造简单,它们不像后来出现的大型生物那样,有骨骼、牙齿那样比较容易保存的组织,而只是由膜包裹的一些有机物。它们能够形成化石,保留到现在吗?

这个难题被科学家用很聪明的办法解决了。蓝细菌(Cyanobacteria)是一类可以进行光合作用的单细胞生物,在浅水处可以聚集,在砂石上形成菌膜。这些被菌膜黏附的沙子由于菌膜的覆盖,可以免受水流的冲刷,因而能够形成对应的结构,例如菌膜被水流掀起时,沙子就会和菌膜一起卷成筒状结构。菌膜被沙掩盖,上面又可以长出菌膜。这样长期反复地沉积,就会形成具有多层结构的叠层石(Stromatolite)。目前在地球上的许多地方,叠层石还在生成。如果我们在古代的沉积岩中发现叠层石和类似卷筒那样的结构,就可以推断出生命在这些沉积岩中的存在。

带着这个想法,美国科学家诺拉·诺夫克(Nora Noffke)在澳大利亚西部皮尔巴拉沉积岩(Pilbara terrane)中发现了叠层石,并且在这些结构中发现了可能是由菌膜卷曲而形成的筒型结构(图2-1)。离叠层石稍远的地方就没有这些结构,说明它们很可能是由生物因素形成的。皮尔巴拉岩层的形成年代在35亿年以前的太古代(Archaean eon),如果这些结构真是由当时的生物留下的,那就说明生物在地球上至少有35亿年的历史。用同样的方法,诺拉·诺夫克在南非的蓬戈拉超群(Pongola Supergroup,29亿年前形成)中也发现了类似的结构。

不过这还只是间接的证据,还不能排除这些结构是由某些人类尚不知道的自然机制形成的,所以有可能只是在形态上和现代形成的叠层石相似。要证明这些结构的确是由生物形成的,还需要更多的证据。由于形成叠层石的蓝细菌能够进行光合作用,要从空气中获取二氧化碳,再利用二氧化碳中的碳元素来合成自身的有机物,是不是可以从这里找到线索呢?科学家研究了光合作用过程中生物获取碳元素的过程,找到了一个办法,那就是碳元素的同位素分析。同位素(isotope)是原子核中具有相同的质子数(所以原子序数相同),而中子数不同的元素形式。地球上的碳有三种同位素,分别是碳-12,碳-13、碳-14(碳后面的数字为相对原子质量,大约是质子数加中子数),其中绝大部分是碳-12,占99%,其次是碳-13,占约1%,而碳-14只有痕迹量。生物在进行光合作用时,对这些碳同位素并不是“一视同仁”的,而是“偏爱”最轻的碳-12。这样,在生物体内的有机物中,碳-13/碳-12的比例就会比自然环境中低。如果在发现菌膜痕迹的地方又发现碳-13的比例低于环境中的,那就能够有力地证明这些结构是来源于生物的。

诺夫克测定了菌膜遗迹处的碳同位素比例,再和周围的碳同位素比例相比较,发现菌膜遗迹处碳-13/碳-12的比例的确明显比周围环境中低,这是对叠层石是由生物原因形成的思想有力的支持。另一位美国科学家多罗西·阿赫勒(Dorothy Oehler)在南非的翁维瓦特群(Onverwacht Group)测定了沉积岩不同深度中碳-13和碳-12的比例,发现中层和深层的同位素比例和其他非生物来源的物质一样,而具有生物痕迹的表层却有异常低比例的碳-13。翁维瓦特群的沉积岩也有35亿年的历史。说明生物的出现也至少在35亿年之前。用这些方法测定到的生物早期的痕迹还在南非的无花果树群(Fig Tree Group)、格陵兰的伊苏阿(Isua)地区、澳大利亚西部的瓦拉伍拉群(Warrawoona Group)等处发现。

蓝细菌是已经可以进行光合作用的(因而已经是比较复杂的)生物,自身营养充足,可以在浅水区大量繁殖形成菌膜,也就比较容易留下化石或痕迹。更原始的生物用其他方法获得的能量较少,可能只以低密度的单细胞存在,也就难以形成化石或留下痕迹。由此推断,最初的,更简单的生物出现的时间应该比35亿年前早得多。地球是大约45亿年前形成的,而地壳的形成大约是在44亿年前,所以从地壳的形成到生命的出现,中间应该不到10亿年的时间。