- 工程力学
- 韩永胜 杨永振 崔洋主编
- 1152字
- 2021-10-22 23:57:35
任务二 内力的概念及截面法
一、内力的概念
构件的材料是由许多质点组成的。构件不受外力作用时,材料内部质点之间保持一定的相互作用力,使构件具有固定形状。当构件受到外力作用产生变形时,其内部质点之间相互位置改变,原有内力也发生变化。这种由于外力作用而引起的受力构件内部质点之间相互作用力的改变量称为附加内力,简称内力。工程力学所研究的内力是由外力引起的,内力随外力的变化而变化,外力增大,内力也增大;外力撤销后,内力也随之消失。显然,构件中的内力是与构件的变形相联系的,内力总是与变形同时产生的。内力的作用为使受力构件恢复原状。构件的内力随着变形的增加而增加,但对于确定的材料,内力的增加有一定的限度,超过这一限度,构件将发生破坏。因此,内力与构件的强度和刚度都有密切的联系。在研究构件的强度、刚度等问题时,必须知道构件在外力作用下某截面上的内力值。
二、截面法
确定构件任一截面上内力值的基本方法是截面法。图3-6(a)为任一受平衡力系作用的构件。为了显示并计算某一截面上的内力,可在该截面处用一假想的截面将构件一分为二并弃去其中一部分。将弃去部分对保留部分的作用以力的形式表示,此即该截面上的内力。
根据变形固体均匀、连续的基本假设,截面上的内力是连续分布的。通常将截面上的分布内力用位于该截面形心处的合力(简化为主矢和主矩)来代替。尽管内力的合力是未知的,但总可以用其六个内力分量(空间任意力系)Nx、Qy、Qz和Mx、My、Mz来表示,如图3-6(b)所示。因为构件在外力作用下处于平衡状态,所以截开后的保留部分也应保持平衡。由此,根据空间任意力系的六个平衡方程:
图3-6
即可求出Nx、Qy、Qz和Mx、My、Mz等各内力分量。用截面法研究保留部分的平衡时,各内力分量均相当于平衡体上的外力。
截面上的内力并不一定都同时存在上述六个内力分量,一般可能仅存在其中的一个或几个。随着外力与变形形式的不同,截面上存在的内力分量也不同,如拉压杆横截面上的内力,只有与外力平衡的轴向内力Nx。
截面法求内力的步骤可归纳如下:
(1)截开:在欲求内力截面处,用一假想截面将构件一分为二。
(2)代替:弃去任一部分,并将弃去部分对保留部分的作用以相应内力代替,即显示内力。
(3)平衡:根据保留部分的平衡条件,确定截面内力值。
截面法求内力与取分离体由平衡条件求约束反力的方法实质是完全相同的。求约束反力时,去掉约束代之以约束反力;求内力时,去掉一部分杆件,代之以该截面的内力。
注意:在研究变形体的内力和变形时,对“等效力系”的应用应该慎重。例如,在求内力时,截开截面之前,力的合成、分解及平移,力和力偶沿其作用线和作用面的移动等定理均不可使用,否则将改变构件的变形效应;但在考虑研究对象的平衡问题时,仍可应用等效力系简化计算。
在本项目以后各任务中,将分别详细讨论几种基本变形杆件横截面上的内力计算。