1.2.1 极间介质电离、击穿和放电通道的形成

通常电火花加工是在液体介质中进行的,电极间介质的击穿是脉冲放电的开始阶段。两极间的液体介质中含有各种杂质,当有电场作用时,这些杂质被吸向电场强度最大区域,并沿电力线形成特殊的接触桥,缩小了实际的极间距离,降低了极间击穿电压,即在相同电压下大大提高了电场强度。另外,两电极的微观表面凹凸不平,不平程度有时甚至可以和极间距离相比拟,使极间电场强度分布很不均匀。距离最近、电场强度最大的地方发生电子发射,阴极表面逸出电子,在电场作用下,电子高速向阳极运动,并在运动中撞击介质的中性分子和原子,产生碰撞电离,形成正、负粒子,导致带电粒子雪崩式增多。当电子到达阳极时,介质被击穿,产生火花放电,形成导通通道,随后电源中积聚的能量沿放电通道注入两极放电点及间隙中。

介质击穿过程非常迅速,一般为10-7~10-5s。介质一旦被击穿便形成放电通道,间隙电流迅速上升,电流密度可高达105~106A/cm2。通道是由大体相等的正、负粒子以及中性粒子组成的等离子流。带电粒子在高速运动时发生剧烈碰撞,产生大量的热,使通道温度非常高。通道中心温度高达10000℃以上。由于受到放电时磁压缩效应和周围液体介质压缩效应的作用,放电开始阶段,通道截面很小,随后迅速扩展。通道直径随放电能量、放电时间和放电间隙的增加而变大,但并非直线关系。通道截面的气体密度不同,密度从通道中心向边缘减小,通道瞬时压力可达数十或上百个大气压。通道发射的光谱除中性原子的谱线外,还有变成电离气体的各种元素的离子谱线。同时,放电还伴随着一系列派生的现象,其中有热效应、电磁效应、光效应、声效应及波长范围很宽的电磁波辐射和爆炸冲击波等。

关于通道的结构,一般认为在单个脉冲一次放电时间内只存在一个放电通道,有时单脉冲放电后电极表面有可能出现两个或多个小凹坑,这可能是由于单个脉冲放电时先后出现两次或多次击穿所致。另外,也可能是通道受到某些随机因素的影响,产生游离、抖动,因此在单个脉冲周期内先后会出现多个或形状不规则的凹坑。但同一时间内只存在一个放电通道,因为形成通道后,极间电压迅速下降,不可能再击穿别处而形成第二个放电通道。