第1章 基础知识——大语言模型背后

本章共包括三部分内容。本章首先简要回顾自然语言发展历史,从语言、图灵测试一直到2022年年底的新突破——ChatGPT;接下来介绍语言模型基础,包括Token、Embedding等基本概念和语言模型的基本原理,它们是自然语言处理(natural language processing,NLP)最基础的知识;最后介绍与ChatGPT相关的基础知识,包括Transformer、GPT和RLHF。Transformer是ChatGPT的基石,准确来说,Transformer的一部分是ChatGPT的基石;GPT(generative pre-trained transformer,生成式预训练Transformer)是ChatGPT的本体,从GPT-1,一直到现在的GPT-4,按照OpenAI自己的说法,模型还是那个模型,只是它更大了,同时效果更好了;RLHF(reinforcement learning from human feedback,从人类反馈中强化学习)是ChatGPT的神兵利器,有此利刃,ChatGPT所向披靡。