1.5.3 创新应用成果凸显

近年来,全球面临日趋严峻的能源资源短缺、生态环境恶化、粮食安全、疾病危害等挑战,高质量、高效率、可持续和主动健康成为生物产业发展和变革的主要方向,也是合成生物学的重要使命。设计功能强大、性能优越的人工生物系统,可实现燃料、材料及各类高值化学品的产业转型升级和绿色发展;重塑构建植物的信号或代谢通路,可实现高效光合、固氮和抗逆,破解农业发展的资源环境瓶颈约束;创建人工细胞工厂,可实现稀缺天然产物、药物的高效合成,推进医药健康产业的高质量发展;设计构建疾病发生发展的人工干预途径,可实现基因治疗、干细胞治疗、免疫治疗等生物治疗领域的新突破;人工合成微生物及群落,可大幅提升环境污染监测、修复和治理能力,助力健康环境和生态文明建设。

在生物制药领域,合成生物学通过设计和构建人工细胞工厂,为复杂天然产物的绿色高效合成提供了新的思路,在氨基糖苷类抗生素、核苷类抗生素、核糖体肽、萜类以及聚酮类化合物等天然药物生物合成方面已经取得了诸多应用成果。通过设计和构建人工细胞工厂,Paddon等人在酵母菌中成功生产出青蒿素前体,将其产量从100mg/L提升到25g/L,成为合成生物学成果产业化的里程碑事件。斯坦福大学的研究人员在酵母菌中实现完全合成阿片类药物,他们将植物、细菌和啮齿动物基因混合导入酵母菌中,用改造过的酵母菌成功地将糖转化为蒂巴因——吗啡等止痛药物的前体。Wang等人在代谢水平上清晰阐明链霉菌初级代谢到次级代谢的代谢转换机制并进行工程应用,为实现聚酮类药物乃至其他次级代谢生物活性产物高效、绿色的生物制造开辟了新思路。近年来,我国研究人员利用合成生物学技术改造的高产药物菌株开始投入工业化生产,实现了纳他霉素、玫瑰孢链霉菌达托霉素、他克莫司等药物的生物合成。

在健康医疗领域合成生物学可以利用细胞装备生物传感器检测疾病靶标,并通过响应环境刺激来调控效应分子,激活下游信号通路,其以工程化细胞为基础的新型治疗方法为传统医学难以解决的问题提供了新思路和新手段。2017年,FDA批准了第一个CAR-T细胞治疗药物;Krawczyk等人利用合成生物学方法工程化改造人胰岛β细胞,并利用定制的生物微电子设备实现对胰岛素合成和释放的精准调控,这是继光、磁、无线电波、超声等基因调控系统之后,又一项极具应用前景的远程调控细胞功能的技术;Nissim等人构建了可响应细菌密度、氧含量和葡萄糖浓度等多种调控信号的生物传感器,能够实现响应肿瘤微环境驱动抗癌基因表达并释放抗癌分子。此外,我国研究人员将含有组织型纤溶酶原激活剂信号肽基因的全长S基因克隆到工程化复制缺陷型人5型腺病毒中,构建出了有效的人体腺病毒载体新冠疫苗,还开发出了融合佐剂效应的人工设计纳米颗粒疫苗,能够有效增强体液免疫和细胞免疫效果。

在化学品合成领域,合成生物学研究已应用于第二代生物乙醇、生物柴油等生物燃料产品的研发。研究人员以工程化微生物作为底盘细胞,实现了乙醇、1,4-丁二醇、聚羟基脂肪酸酯等燃料的高效率、低成本和多样化生产,开辟了微生物工程化炼制能源新途径。例如,加州大学的研究人员通过改变大肠杆菌的氨基酸生物合成途径首次成功合成长链醇燃料——其具有更高的能量密度,有望成为理想的替代生物燃料。此外,人工改造的藻类可通过光合作用合成生物石油,具有打造规模化生物燃料工业生产“细胞工厂”的发展空间。根据麦肯锡统计,未来生物制造将覆盖约60%的化学品合成,合成生物学技术在能源、化工等领域具有改变世界工业格局的潜力。

在农业与食品领域,我国研究人员从头设计并构建了11步反应的非自然固碳与淀粉合成途径,在实验室中首次实现从二氧化碳到淀粉分子的全合成;Lin等人在水稻和小麦原生质体中利用引导编辑系统实现16个内源位点的精准编辑,为植物基因组功能解析及实现作物精准育种提供了重要技术支撑。细胞培养肉技术是近年来兴起的一种新型食品合成生物技术,其通过大规模培养动物细胞获得肌肉、脂肪等组织,再经食品化加工生产得到肉类食品。研究人员通过构建正反馈基因线路设计等合成生物学技术改造和优化了巴斯德毕赤酵母,可生成大豆血红蛋白,然后将其添加到人造肉饼中以模拟肉的口感和风味;已有研究人员通过基因工程和细胞工程等技术手段高效表达天然奶中的各种乳蛋白组分,陆续剔除乳糖、胆固醇、抗生素和致敏原等不良因子,获得了人造乳制品。2022年,耶路撒冷希伯来大学证明了几个鸡品种的成纤维细胞自发永生化和遗传稳定性,估计生产成本为每磅[1]1.8~4.5美元,是一种具有成本效益的细胞培养鸡肉生产方法。


[1] 1磅等于0.45359237千克。——编辑注

在生物计算领域,2012年和2013年,NatureScience分别刊登了哈佛医学院George Church等人和欧洲生物信息研究所Goldman等人在DNA数据存储领域的研究成果,这两项研究的成功有赖于DNA合成和测序技术的巨大进步,使得合成与读取数以万计的DNA分子成为可能。在此之后,DNA数据存储领域的新进展如雨后春笋般涌现。例如,天津大学合成生物学科研团队创新DNA存储算法,通过将 DNA合成技术与纠错编码结合,将10幅敦煌壁画存入DNA,并证实壁画信息在实验室常温下可保存千年,证实了DNA分子已成为世界上最可靠的数据存储介质之一。美国华盛顿大学开发了用于体内分子记录的“DNA打字机”,记录和解码了数千个符号、复杂事件历史和短文本消息,结合单细胞测序重建3257个细胞的单系谱系,展示了一个能在活真核细胞内运行的人工数字系统。生物分子计算伴随着合成生物学的兴起而不断发展,DNA等纳米材料不仅可用于逻辑运算,还可以构造神经网络,并从训练数据中进行学习,为在分子层面实现神经拟态计算提供了可能。以碳基生物合成材料作为计算机存储与运算介质,有望制造运算速度和存储能力大幅度增强的新型分子计算机,具备分析、判断、联想、记忆等功能,给经济社会发展和人类生活带来难以估量的颠覆性影响。