前言

机器学习(Machine Learning)作为人工智能的核心技术之一,在很多领域得到广泛应用。与机器学习相关的书籍非常多。由于其涉及的学科众多,特别是对数学基础有非常高的要求,给大家的学习提出了比较大的挑战。出于书籍的严谨性,很多书籍特别是教材,在相关理论的论述、公式符号的表示上,都会使人望而却步。带着这样的情绪和一知半解的状况,便很难在解决实际问题时用好机器学习,更不要说去进行创新和发展了。

笔者作为一名计算机系软件专业的毕业生,二十多年来一直从事信息工程方面的工作,现在所在公司是数据智能领域的领先企业,所以这几年里通过系统性地自学和使用机器学习方面的知识,重新对在学校中学习过的数学理论课程进行了理解,老实说在此之前很多知识基本上忘记了。再重新来学习这些东西,恍惚间感觉又回到学校里开始学习。然而在几十年的人生经历和成长中,笔者领悟到,其实这个世界上基础的规律或者说是“道”层面的东西是非常简洁明了的,正所谓“道生一,一生二,二生三,三生万物”,真正的大师是进入学生的世界,用学生能够明了和理解的方式去教导学生,让他们不仅知其然,更要让他们知其所以然。因此面对繁杂的知识点,面对生涩的名词和概念,不同于青涩的学生时代,一直有一个声音萦绕在耳边,这个声音就是:“这些知识背后的理论对应的现实落脚点是什么?数学家、科学家们做的是创造性的工作,因此会创造很多新的概念和名词,这些名词对应的现实问题的实质含义是什么?”如果我们能够知道这些知识对应的本质就是在我们身边的点点滴滴,抛去神秘的外衣,让我们摆脱畏惧,应该可以做到对机器学习这种技术的更亲密接触,从而轻舞飞扬。另外,要成功地使用机器学习技术,仅仅知道存在哪些算法和解释它们为何有效的原理是不够的。一个优秀的机器学习实践者还需要知道如何针对具体应用挑选一个合适的算法及如何进行监控。

本书从某种程度上来说,是笔者自己进行机器学习对知识点进行归类、关联、理解后的总结,尽量围绕着机器学习的角度去挑选内容。而且大家可以从本书中看到,很多东西的本质都是相通和趋同的。

本书的目标人群不是以机器学习算法研究作为对象的人群,而是对机器学习有实际工作需要的技术工作者,也可以作为机器学习方面课程的在校学生的辅助读物,从另外一个角度来促进对理论知识探索的兴趣。也不想把它写成一本大部头的书,页数稍微少一点对于大家来说,看起来也轻松点,不至于看来看去由于时间的碎片化,最后还是看的前面几章。

之前和几位同行合作出版过几本书,本书是作者独立编著完成的。还有一个设想是,如果大家觉得这本书还不错,我想结合更多的力量,围绕数据智能领域,针对行业趋势、工程实施、行业人员素质能力、团队管理等方面再陆续做一些总结,出版可以给数据智能领域的技术管理者作为参考的系列图书。

叶新江

2023年1月于杭州