会员
数据科学技术:文本分析和知识图谱
更新时间:2024-12-24 10:59:50 最新章节:11.5 习 题
书籍简介
数据科学的关键技术包括数据存储计算、数据治理、结构化数据分析、语音分析、视觉分析、文本分析和知识图谱等方面。本书的重点是详细介绍文本分析和知识图谱方面的技术。文本分析技术主要包括文本预训练模型、多语种文本分析、文本情感分析、文本机器翻译、文本智能纠错、NL2SQL问答以及ChatGPT大语言模型等。知识图谱技术主要包括知识图谱构建和知识图谱问答等。本书将理论介绍和实践相结合,详细阐述各个技术主题的实现路线,并对应用于业界算法大赛中的技术方案和技巧进行源代码解读,帮助读者深入理解技术原理。最后,本书还介绍了文本分析和知识图谱技术在政务、公共安全、应急等多个行业中的智能应用实践案例。《数据科学技术:文本分析和知识图谱》适合具备Python和机器学习技术基础的高等院校学生、文本分析(或者自然语言处理)以及知识图谱领域的算法工程师和研究机构的研究者阅读,也适合数据科学和人工智能领域的研究者作为参考书。
品牌:清华大学
上架时间:2024-01-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
苏海波 刘译璟 易显维 苏萌
同类热门书
最新上架
- 会员本书以案例的形式,介绍从思维模型分析到场景实践的数据分析方法。全书围绕“数据分析”与“运营增长”两大关键要素,在系统介绍数据分析思维、数据分析方法、数据采集技能、数据清洗技能等基础知识的同时,以问题为导向,解读运营与增长的关键性业务内容,在获客、激活、留存、变现、自传播循环等各个核心运营环节展开数据分析实战。本书提供案例相关数据集与源码包,适合数据分析、产品运营、市场营销等行业有数据分析具体业务需计算机12万字
- 会员本书围绕数据挖掘竞赛,讲解了各种类型数据挖掘竞赛的解题思路、方法和技巧,并辅以对应的实战案例。全书共11章。第1章介绍数据挖掘竞赛的背景、意义和现状。从第2章开始,介绍了各种不同类型的数据挖掘竞赛包括结构化数据、自然语言处理、计算机视觉(图像)、计算机视觉(视频)、强化学习。每种类型的数据挖掘竞赛包含理论篇和实战篇:理论篇介绍通用的解题流程和关键技术;实战篇选取比较有代表性的赛题,对赛题的优秀方案计算机6.7万字
- 会员MySQL数据库是目前全球流行的数据库之一。《MySQL8.0从入门到实战》从入门到实战,系统全面、由浅入深地介绍MySQL数据库应用的各个方面。全书分为8个部分,共18章。第1部分(第1~3章)介绍MySQL的基础知识,包括初识MySQL、数据库设计和数据类型;第2部分(第4~6章)介绍MySQL的基本操作,包括SQL基础操作、MySQL连接查询和数据复制、MySQL基础函数;第3部分(第7、8计算机9.7万字
- 会员《数据分析师手记:数据分析72个核心问题精解》从底层认知、思维方法、工具技术、项目落地及展望出发,使用问答的形式对数据分析中的72个核心知识点进行讲解,构建了数据分析的知识框架,带领读者认识数据分析背后的奥妙。读者可以用本书作为学习地图,针对具体的方法、技术进行延伸学习。计算机16.8万字
- 会员数据科学的关键技术包括数据存储计算、数据治理、结构化数据分析、语音分析、视觉分析、文本分析和知识图谱等方面。本书的重点是详细介绍文本分析和知识图谱方面的技术。文本分析技术主要包括文本预训练模型、多语种文本分析、文本情感分析、文本机器翻译、文本智能纠错、NL2SQL问答以及ChatGPT大语言模型等。知识图谱技术主要包括知识图谱构建和知识图谱问答等。本书将理论介绍和实践相结合,详细阐述各个技术主题的计算机21.6万字
- 会员《MySQL从入门到精通(第3版)》从初学者角度出发,通过通俗易懂的语言和丰富多彩的实例,详细介绍了MySQL开发需要掌握的各方面技术。全书共分为4篇22章,包括数据库基础,初识MySQL,使用MySQL图形化管理工具,数据库操作,存储引擎及数据类型,数据表操作,MySQL基础,表数据的增、删、改操作,数据查询,常用函数,索引,视图,数据完整性约束,存储过程与存储函数,触发器,事务,事件,备份与恢计算机14万字
- 会员《数据分析实践:专业知识和职场技巧》从初学者的角度出发,讲解了进阶为高级数据分析师所需的知识和技能,其中既包括数据分析岗位的介绍、发展现状及未来趋势,也包括实际工作中各环节的方法策略、实战案例,还包括职场中的困惑解答及面试指导。阅读本书,并基于本书进一步拓展所需要的知识能,可以帮助读者形成一套成系统、可实战的数据分析方法论。计算机19.6万字
- 会员高质量的数据关乎企业运营、合规、决策和业绩的关键,哈佛商业评论的一项研究发现,企业中只有3%的数据符合质量标准,绝大多数公司都在寻求切实可行的指导来提高数据质量。本书作者基于多年在数据、数据分析和人工智能方面的实践经验,阐述了4步构建高质量数据体系。他提出了高质量数据的四阶段DARS方法(定义、评估、实现、持续)和10个数据质量最佳实践案例,以此来提高业务中的数据质量水平,为业务提供数据价值,保证计算机11.7万字