第1章 绪论
Chapter 1 Introduction
1.1 钎焊方法的原理和特点 Princi-ple and Characteristic of Brazing and Soldering Technique
钎焊和熔焊方法的根本区别,在于钎焊过程中母材的接头处并不产生熔化。常规的钎焊过程是采用熔化温度比母材固相线低的钎料,将其放置于欲钎焊的接头处,当加热至低于母材的固相线但高于钎料熔化温度时,这时钎料熔化,液态的钎料润湿固体的母材,在母材接头的缝隙中流布、填充、与母材相互作用(溶解、扩散或生成化合物),最后冷却凝固,从而将两块母材连接在一起。例如,钎焊纯铝(熔点为660℃)采用Al-Si共晶合金(熔化温度为577℃)作钎料,在操作温度为590~630℃时,钎缝中熔态钎料与母材产生溶解与扩散反应,冷却后形成共晶-亚共晶结构的钎缝,将两块母材连接到了一起。
钎焊时工件常被整体加热(如炉中钎焊)或钎缝周围大面积均匀加热,因此工件的相对变形量以及钎焊接头的剩余应力都比熔焊小得多,易于保证工件的精密尺寸。
钎料的选择范围较宽,为了防止母材组织和特性的改变,可以选用液相线温度相对低的钎料进行钎焊,熔焊则没有这种选择的余地。
只要钎焊工艺选择得当,可使钎焊接头做到无须加工而能“天衣无缝”,这是熔焊难以做到的。此外,适当改变钎焊条件,还有利于多条钎缝或大批量工件的同时或连续钎焊。
由于钎焊反应只在母材表面数微米至数十微米以下界面进行,一般不牵涉母材深层的结构,因此特别有利于异种金属之间,甚至金属与非金属,非金属与非金属之间的连接,这也是熔焊方法做不到的。
钎焊还有一个优点,即钎缝可做热扩散处理而加强钎缝的强度。当钎料的组元与母材存在一定的固溶度时,延长保温时间可使钎缝的某些组元向母材深层扩散,最终能使钎缝在显微镜下“消失”。
钎焊方法的弱点主要是钎料与母材的成分和性能多数情况下不可能非常接近,有时相去甚远,例如用重金属钎料钎焊铝,这就容易产生接头与母材间不同程度的电化学腐蚀。此外,钎料的选择和界面反应的特点都存在一定的局限,在钎焊大多数材料时,钎焊接头与母材不能达到等强度,只好用增加搭接面积来解决问题。
钎焊一词俄文称为Пайка,英文中则没有对应的词,只有Brazing(硬钎焊)和Soldering(软钎焊),中国台湾则相应称“硬銲”和“軟銲”。根据国际标准,将使用钎料的液相线温度在450℃以上的钎焊称为硬钎焊,在450℃以下的则称为软钎焊。有些文献报告中,习惯上不规范地更加细分成高温、中温、低温钎焊,例如,铝的钎焊,将500~630℃范围内称为高温铝钎焊,300~500℃称为中温铝钎焊,而低于300℃的称为低温铝钎焊。铜及其他金属合金的钎焊有时也有类似情况出现,但温度划分范围不尽相同。这种细分的出现是由于各个范围内使用钎料、钎剂、钎焊方法的类型往往相似,而不同的范围则相差较大的缘故。一个突出的例子是在300℃以下的低温钎焊,可以普遍使用有机化合物的钎剂,而在此温度以上则很难。至于经典意义的“高温钎焊”则是指钎焊温度高于900℃,在真空或保护气体中(不用钎剂)的钎焊。