1.3 熔态钎料与固体母材的相互作用 Reaction of Molten Filler with Solid Base Metal
熔态钎料一旦与母材润湿,其相互作用立即开始。作用的形式取决于相的关系(phase relation)。尽管实际上很少用较低熔点的纯金属当作钎料,为了便于说明问题,首先讨论液态纯金属与固态纯金属间的相互作用。
1.3.1 熔态金属与固体金属的相互作用 Reaction of Molten Metal with Solid Metal
钎焊中钎料(F)与母材(B)之间相的关系,通常有如图1-10所示的四种类型:图a为F-B间固(母材)、液相互溶度都极小;图b为F-B间固、液相(钎料)互溶度都较大;图c为F-B间有固液同分化合物(congruent compound)生成;图d为F-B间有固液异分化合物(incongruent com-pound)生成。如果钎焊工作温度选择为TB,可以看出开始时,无论哪一种情况都是母材B向液态钎料中溶解。液体钎料的组成因溶入母材而沿虚线向右移动;当分别达到La、Lb、Lc、Ld组成点时,母材的溶入便告饱和。
第一种情况(见图1-10a),由于母材B在熔态钎料F中溶解度很小,钎缝实际上是由纯F构成的,近似的例子是用纯银或纯铜钎料钎焊铁。
第二种情况(见图1-10b),母材B在熔态的钎料中的溶解度很大,这时B以很快的速度溶入液态钎料F,直至组成达到Lb点。钎缝的结构与钎焊时加热的时间有关,如果钎焊的时间很短,液体钎料的组成还处在F-e之间,冷凝后的钎缝将是一种亚共晶结构,即在F′-B′共晶的背景上有从液相中析出的、孤立的、常呈云朵状的F′初晶(以下F′和B′表示以F或B为主的固溶体)。如果钎焊加热的时间较长,液态钎料的成分介于e′-Lb之间,冷却时呈过共晶结构。这种结构由F′-B′共晶和B′的初晶构成,但B′初晶析出时总以母材B的晶粒为晶核生长,因此B′初晶常和母材连在一起呈圆滑的一排峰峦状。图1-11所示为1000℃时纯银钎料钎焊铜的钎缝,钎缝的组成显然介于e′-Lb之间,但靠近e点。
如果钎焊加热时间更长,钎缝的组成将沿Lb→Sb移动,到达Sb点时,钎缝中便不再看得见有共晶的组织。事实上要达到Sb点很难,需要极长的时间。通常若干小时的钎焊保温,钎缝的组成也只会停留在Lb~Sb之间的某个位置上,这时钎缝的结构表现为钎料向母材的晶间渗透,母材的晶粒之间充斥着少量共晶组织。加热时间越长,共晶组织渗透的范围越大,共晶渐呈清晰的线条勾画出母材的晶界。在此范围之内的晶粒不会是纯B的晶粒,而是组成为Sb的固溶体。在金相磨片上常可看到它们比纯B晶粒的硬度大得多。
以上所谓时间的长短是相对的,由于钎缝中的反应远非平衡的,几种反应常会在钎缝中同时发生。
第三种情况(见图1-10c),钎料与母材作用生成固液同分化合物c,这时化合物c的熔点显然高于钎焊温度TB,c往往是由熔态的F原子向母材中迅速扩散而形成[19],因此在母材的边界上常可看到这个化合物是致密的一层(见图1-11和图1-12),这是液态的Sb和固态的Ni反应时在界面上形成一层化合物NiSb。固液同分化合物经常具有独立的晶格,具有通常无机化合物的某些属性,即比较稳定、不易分解、性脆、电导率和热导率都比较低等。这种情况对一个钎焊接头来说是不利的。类似的例子还有用Cu-P钎料钎焊铁,Cd基钎料钎焊铜。
图1-10 钎料与母材之间相的关系
Fig.1-10 Basic phase relationships between filler metal and base metal F—钎料 B—母材 TB —钎焊温度
图1-11 1000℃时纯银钎料钎焊铜的钎缝
Fig.1-11 Fillet of copper brazed by pure silver at 1000℃
图1-12 熔态Sb与固态Ni作用时界面上有层状固液同分化合物NiSb生成(700℃浸渍1s)
Fig.1-12 Lamellar congruent intermetallic NiSb formed from solid Ni with liquid Sb(at 700℃for 1s dipping)
第四种情况(见图1-10d),钎料与母材间生成固液异分化合物d。虽然从热力学平衡的观点来看,化合物d和c的性质应该相似(见图1-10d),但由于d的生成反应是l+B′=d′,这种反应在钎焊条件下不可能是平衡的,即钎缝中同时会存在l、d′和B′多相,在TB温度下还会含有F存在。其中d的生长方式相当独特,在钎焊快速反应的条件下往往呈笋状生长。图1-13所示为熔态Sn与固态Cu作用时界面上有笋状固液异分化合物Cu6Sn5生成[19,22]。
图1-13 熔态Sn与固态Cu作用时界面上有笋状固液异分化合物Cu6Sn5生成(350℃浸渍2s)
Fig.1-13 Bamboo shoot-like incongruent intermetallic Cu6Sn5 formed from solid Cu with liquid Sn (at 350℃for 2s dipping)
液态Sn与Cu反应温度低于415℃时,有一固液异分化合物η相生成[14]965,其组成接近Cu6Sn5。图中笋状化合物的上部富Sn,下部富Cu,实际上是一片以Cu6Sn5为主体,但组成不严格确定的固溶体。在350℃时,其长高可达3~10μm,降低温度可减小化合物的生长高度。这种钉状嵌入式的结构和层状的固液同分化合物结构不同,在某种程度上有利于钎焊接头的牢固性。液态锡和银、铁、钴、镍等过渡金属与母材作用时,在一定的温度下,其金属间化合物的类型和生长方式均相似[19],仅仅快速生长时的温度有所不同。
实际工作中很少用纯金属来做钎料,而多用合金。熔态钎料和母材的反应虽较复杂,但仍可用类似的图解来分析他们之间的冶金过程。例如,用Al-Si共晶钎料来钎焊Al,就相当于图1-10b中将F换成Al,B换成Si,而钎料的位置则是e,钎焊的温度当然不能再是TB,而只能是低于F(Al)的熔点的某个温度。这时的冶金反应就可用图1-10b的类似过程来进行分析。
1.3.2 钎料的构成 Construction of Filler Metals
1.3.2.1 钎料的组元
钎料较少用纯金属,而多用二元或多元合金,以更有利于获得所需的熔化温度。理想的钎料常使用主组元和母材的基本金属相同的共晶类合金,例如:用Al-Si钎料钎焊铝合金;Cu-Ag、Cu-P钎料钎焊铜合金;Ni-B、Ni-Si钎料钎焊镍基合金等。其优点如下:
1)钎料的主组元和母材的相同,钎焊时必定具有良好的润湿性。
2)同样的原因,钎缝在冷凝时,其中与母材同成分的过剩相(初晶)最易以母材晶粒为晶核外延生长,犬牙交错使之成为牢固的结合。
3)钎料中的第二相既然能与钎料的主组元形成共晶合金,也必然易于向同组元的母材作某种程度的晶间渗透[25],适量的晶间渗透有利于钎缝的牢固。
4)调整钎料的组成可以控制钎焊时母材向钎料中的溶入量。例如,图1-10b中,钎焊温度为TB时,母材B向钎料中的最大溶入量为TB→Lb;如果采用成分为e的钎料,则最大溶入量只有e′→Lb。降低钎焊温度,此溶入量还能更少。采用与母材不同的金属作钎料的主要成分,如具有较大的互溶度则容易引起熔蚀,例如用纯Zn钎焊铝。
5)由于钎料中的主要成分与母材的相同,接头的耐腐蚀性要优于完全不同种的钎料合金。
以上的情况并不总能实现,例如在高温钎焊中钎焊硬质合金、耐热合金,就难以找到相应的共晶钎料,不得不采用与铁同族的镍基钎料,由于高温情况下润湿性能一般较好,也常采用铜基钎料、银基钎料。又例如在软钎焊中,不得不采用低熔点的重金属合金作为钎料。
在二元共晶钎料的基础上,为了进一步降低熔化温度,改善润湿性或增加接头强度而加入第三种、第四种金属,甚至更多种金属形成三元或多元合金钎料。
1.3.2.2 钎料的组成
在钎料组元体系选定以后,钎料组成的选择非常重要,它在相当大程度上影响钎焊的工艺性能。以图1-14a中的ABC钎料三元合金为例,通常最优先的选择是组成为共晶点E的合金,其次是二元共晶线上组成为a点的合金,最后的选择才是类似b点的合金。
图1-14 不同组成钎料的结晶过程 a)三元合金 b)冷凝曲线
Fig.1-14 Solidification process of liquid filler metals with different compositions
首先观察组成为E点液态合金的冷凝过程(见图1-14b中的冷凝曲线①)。这个液态钎料合金冷却到温度为TE时,开始以三元共晶方式结晶,TE的温度不会改变,直到结晶结束。熔程为0,钎焊工艺最佳。再看组成为a点的液态钎料合金(见冷凝曲线②)。当它冷却至温度为Ta时,从液态钎料中同时析出共晶的A+B固相,继续冷却,液相的组成就沿着a—E的共晶线移动;当温度冷却到TE时,钎料就以三元共晶的方式结晶,直到完全凝固。这个合金的熔程是Ta—TE。最后观察组成为b的钎料合金(见冷凝曲线③)。钎焊时熔化的钎料开始冷却,当温度冷却到Tb时,开始析出B的初晶,这时液态合金的组成就会向B的反方向移动;当温度冷却到Tc时,从液相中开始析出B+C的二元共晶;下一步液相组成沿着c—E继续着B+C二元共晶的结晶过程,直到温度冷却到TE,剩余的液相组成到达E点,开始三元共晶的方式结晶直到完全凝固。这个合金的熔程最长,为Tb—TE。
有经验的技师常常会困惑,组成点为a或b的钎料,特别是组成点为b的钎料钎焊时,开始阶段熔态钎料的流动性往往很差,随着温度的降低,流动性反而会突然好起来,一直到钎料的完全凝固。为什么?这就是因为这类钎料冷凝开始阶段有初晶和二元共晶固相的析出,使得熔态钎料变得黏黏糊糊,等到液态钎料中这些固相沉积待定,剩下的低熔的三元共晶才显出末段的高流动性。
可以看出,钎焊时共晶点或靠近共晶点组成的钎料具有最好的流动性。但实践中,由于钎料合金共晶点的温度并不符合工艺的要求而采用了相图中其他组成点的合金,这免不了就会丧失工艺性能。在这种情况下,最好重新选择钎料的体系,本书的附录D“实用钎料的成分和熔点或固相线-液相线”可供参考。
1.3.2.3 特殊状态的钎料
1.非晶态钎料
通常使用的钎料,根据需要常能轧制或挤压成板、丝、带、环等形状便于实际应用。但许多性能很可能优异的钎料体系由于种种原因,例如性脆、抗腐蚀性差、严重偏析等特点而限制了它们实际的应用。20世纪70年代开始,兴起一种将融态钎料在光滑平板或滚筒上急冷的方法制成了过冷的玻璃态钎料箔,商品名Metaglas Brazing Foil(简称MBF)解决了这一难题[23]。MBF的厚度常在50~200μm之间,剪切、冲制成各种形状的精细钎料件,重量从数十毫克到几百克不等,成功用于薄壁多通道和蜂窝结构等的钎焊。近些年来Ni基的MBF在航空和航天工业中得到广泛应用。钎焊接头能满足高强度、低熔蚀和高可靠性的要求。
俞伟元[24]研究了MBF加热过程中的相变。图1-15所示为不同形态Cu-Ni-Sn-P共晶钎料的DSC曲线。曲线b为普通晶态钎料的DSC曲线。加热时基本上仅有一温度为639℃共晶熔化的吸热峰I′。曲线a为同一组成的非晶态MBF钎料的DSC曲线。加热至234℃时出现放热峰g。这时非晶态的合金晶化转为均匀的细结晶,这些细晶粒远非平衡态,而残存有很大的畸变能,故能使共晶熔化峰的温度I比之普通晶态的共晶熔化温度I′提前了2~4℃。
图1-15 不同形态Cu-Ni-Sn-P共晶钎料的DSC曲线 a)非晶态钎料 b)普通晶态钎料
Fig.1-15 The DSC curves of Cu-Ni-Sn-P eutectic alloy with different features
从图1-15所示的DSC曲线可以看出,当温度超过共晶熔化温度以后,无论是MBF或是普通晶态钎料都已熔为液态,二者不再有区别,钎焊时就应以相同的方式冷凝结晶。但实际工作中发现,MBF对母材的润湿性要明显高于普通晶态钎料。这被解释为,钎焊加热到接近共晶点温度之前,由于MBF畸变能的释放,已促使了钎料的提前活化。
MBF的钎焊工艺和普通晶态钎料有所不同,常在钎缝中装配好钎料,在真空中或惰性气体的保护下,以接近或稍高于共晶的温度,作较长时间的保温,从10~15min甚至高到40min不等,以获得均匀无偏析、高强度和耐腐蚀的优良接头[23]。
2.纳米粒度钎料
物质粒子的熔点随粒径的减小而降低的现象,从20世纪初就有人做过理论的预测。20世纪中叶陆续得到实验的工作证实。图1-16所示为实验测定的纳米银粒子的熔点随粒子尺寸变化关系的两组文献综合数据[26]。
图1-16 实验测定纳米银粒子的熔点随粒子尺寸变化关系的两组文献综合数据
Fig.1-16 Two literature values from the experimental determinations of the m.p of Ag nanoparticles depending on the particle size
Ag平衡晶态的熔点为962℃,从图1-16中可见,银粒子的粒径小于17nm时其熔点已降到了约650℃,随着粒径进一步减小,熔点也节节下降。当粒径减至3~4nm时,银粒子的熔点已降至低于200℃。这一现场的产生缘于粒径越小,比表面越大,赋有的表面能也越大的缘故。纳米级的银粒子一旦熔化聚成较大的液滴,便会恢复正常金属的本性,立即固化为普通的晶态银。利用这一特点,可以在低温下获得高强和耐热的接头,避免了通常晶态钎料高温熔化,钎焊时钎料冷凝过程中在工件中不希望发生的相变。近些年来首先用在电力工业中用以代替钎焊一些容易热裂的接头。继而在电子印刷电路上也得到了应用[27],特别是两种线胀系数相差很大的母材的钎焊。
图1-17所示为5~15nm(主成分5~8nm)银粒子钎料膏在空气中的DSC和TG分析[26]。图1-17a所示为从室温到500℃的加热曲线。在275~300℃有一放热峰,对应的TG曲线上有剧烈的失重,这相当于钎料膏中有机物烧蚀的放热。在约410℃处出现一尖锐的放热峰(注意,图1-17所示的放热方向向下,与通常的方向相反),相当于纳米粒子的瞬间熔化并转化为常态的固态Ag。通常,晶态金属DSC上熔点是很强的吸热峰,而此处纳米粒子的“熔点”却是放热的,说明这个“熔点”根本不是常规意义上的熔点,只是纳米态向常态转化的转变点,此时放出了大量积累的表面能。上述实验完毕以后将试样冷却至室温,再次进行加热过程的DSC和TG分析(见图1-17b),可以见到曲线上完全没有了纳米粒子特性的痕迹。只是加热到962℃时,出现的是晶态银熔点的吸热峰。同时可以看到,在TG曲线上也完全没有质量的变化。
图1-17 银粒子钎料膏在空气中的DSC和TG分析 a)纳米银钎料膏的DSC和TG分析 b)试样冷却后再一轮的DSC和TG分析
Fig.1-17 DSC and TG Curves of the Ag nanopaste analysis in air
图1-17a中左下的照片是第一轮实验完毕后试样的扫描电镜照片,可看到纳米粒子的瞬间熔化所得的只是一种烧结的结构,和常规钎焊时熔态钎料铺展的结构是完全不同的。一次“熔化”就成定型,不可能将其再次熔化,因此,纳米钎料钎焊的实际工艺中需要将钎缝两侧的母材进行施压和较长时间的保温,促其扩散以获得均匀的接头。
1.3.3 熔态钎料在母材间隙中的流动和钎缝结构的不均匀性 Flowing of Molten Filler Metal in the Clear-ance of Base Metals as well as Inho-mogeneity of the Formed Fillet
熔态的钎料在母材狭缝中作毛细流动并形成钎缝时,钎缝的结构是不均匀的。特别是熔态钎料作较长距离流动时更是这样。对于共晶钎料,因为钎焊温度比共晶点高许多,当熔态钎料一润湿母材,母材就开始迅速溶解,钎料的成分也会向母材纵深渗透,在钎料流动过程中,这种作用就依次沿流动的方向发展。最终的钎缝是钎料流入处宽,终止处窄。图1-18所示为用Al-Si共晶钎料钎焊纯铝时的钎缝结构。钎焊温度为600℃,钎缝流长200mm,6张照片是钎缝上依次截取的部分段落。
当用与母材互溶度小的钎料钎焊时,钎缝两端宽窄不一的现象则并不明显,但常可发现钎料中的高熔点组元留在钎料的流入端,而低熔点的共晶则流至远端[28]。
熔化的钎料与母材的互溶度较大时,钎焊过程中将会发现有明显对母材的晶间渗入。对板状母材断面的渗入速度要比板状母材表面的速度快。这显然是由于板材轧制时表面应力和晶粒变形所引起。
钎料作较长距离流动而形成的钎缝有自然的排渣作用,形成的钎缝比较致密,但由于以上已说明的过程,钎缝结构往往是不均匀的。
图1-18 用Al-Si共晶钎料钎焊纯铝时的钎缝结构
Fig.1-18 Fillet structure of aluminum brazed by Al-Si eutectic filler metal
当采用的钎料中的主要成分元素与母材不同而又有金属间化合物生成时,则钎料边流动边生长金属间化合物,典型的例子是用Sn钎焊铜。
1.3.4 熔析与熔蚀 Liquation and Erosion
钎焊时钎缝往往并不光滑,有时在钎料的流入端留下一个剩余的钎料瘤,有时又会产生一个凹坑,前者称为熔析,后者称为熔蚀。两者产生的根本原因在于钎料的组成和钎焊温度搭配不当。
熔析的现象主要在应用亚共晶钎料时容易发生。图1-19所示为熔析和熔蚀现象的解释。钎料主要成分和母材具有相同的组元B,钎料的第二组元为F,如果钎料的成分为a,工作温度为T1,此时钎料状态为a″,实际存在的是组成为S的固相和组成为c′的液相。杠杆原则指出:S-a″的长度相当于液相c′的量,而a″-c′的长度相当于固相S的量,可见此时液相的量多于固相的量。钎焊进行时,液相c′顺着钎缝流走,剩下的是组成为S的固相,而S只有相当于S′的温度时才有可能熔化,它已接近母材B的熔点TB,因此注定它将成为一个赘瘤留下,只能用随后的机加工将其除掉。如果一开始工件的温度是T2或高于T2的温度,钎料熔化后其中便不存在固相,钎料流走后则不会有任何高熔点的残余留下。钎料成分越靠近B,上述熔析现象就会越严重。通常钎焊温度总是高于钎料的液相线,即成分为a的亚共晶钎料,其钎焊温度至少要高出T2许多,产生熔析的原因似乎根本不存在,但问题在于工件的升温速度如果较缓慢,当升到Te~T2区间而钎料低熔点部分很快流走,这种熔析就会发生。因此使用亚共晶钎料的关键是要快速升温。
熔蚀的发生主要由于钎料成分选择不当、钎焊温度过高以及钎焊停留时间过长。图1-19中a、c为亚共晶钎料,e、b分别为共晶及过共晶钎料。如果钎焊温度为T2,此时c、e、b钎料将产生熔蚀。这是由于钎料主要成分B与母材相同,所以钎焊时母材不断熔入液态钎料,液态钎料组成将沿T2→a′线向富B方向移动;组成达到a′后,熔蚀即停止。在T2温度下,只有组成为a的亚共晶钎料才完全不产生熔蚀。其中组成为b的过共晶钎料溶入的母材最多(熔入量由b→a),因此熔蚀也最剧烈。如果温度降到T1,则熔蚀现象会大大减轻,此时亚共晶钎料c即不产生熔蚀。
实际上钎焊温度高出钎料液相线许多,严格意义上的熔蚀(母材的熔入)是不可避免的。只有比较严重的熔蚀才会给工件带来伤害,例如:已发生较严重熔蚀的液态钎料顺着钎缝流走,则会在放置钎料处留下麻面或凹坑。如果不流走,长时间停留原处,则会在此处与母材互熔,改变焊点母材的成分,使母材变形,甚至熔穿。
图1-19 熔析和熔蚀的解释
Fig.1-19 The interpretation of liquation and erosion
综上所述,因为熔蚀过程只涉及钎料体系的液相线,所以上述分析也适用于判断三元或多元钎料对母材的熔蚀。这可由钎料的组成点与纯B(母材)点间作一多温断面,根据断面的液相线进行类似的推论。
总之,熔蚀的产生在于钎料合金中的第二相(即与母材不同种的另一组元)与母材的互溶度太大、温度太高和钎料在原地停留时间过长所致。
前述也可以看出,亚共晶钎料的熔蚀较小,而过共晶钎料则有较大的熔蚀。因此除在特殊的情况下,一般较少使用过共晶钎料。图1-20所示为600℃钎焊铝时钎料(Al-Si)的组成对钎缝的影响。由于第二相Si的含量不同,在同一温度下(600℃)钎焊,钎缝产生从熔析到熔蚀的不同结果。
图1-20 600℃钎焊铝时钎料(Al-Si)的组成对钎缝的影响 [由左至右钎料w(Si)依次为4%、6%、9%、11%、12.5%、14%、15%]
Fig.1-20 Effect of composition of Al-Si filler metal on the fillet during aluminum brazing at 600℃ from left to right:content of Si being 4,6,9,11,12.5,14,15 wt%respectively