第1章 二维信号与系统

信息是客观事物状态和运动特征的一种普遍形式,客观世界中大量地存在、产生和传递着以这些方式表示出来的各种各样的信息。考虑空间和时间变量,视觉信息是一种四维信息,它包括三维空间变量(xyz)和一维时间变量t。信号是运载信息的工具,是信息的载体。从广义上讲,它包含光信号、声信号和电信号等。考虑空间变量和时间变量,视频信号是一种三维信号,它包括二维空间变量(xy)和一维时间变量t。常见的静止数字图像属于二维离散信号,它包括二维空间变量(xy),其处理系统为二维离散系统。

经典的二维信号与系统可分为二维连续信号与系统和二维离散信号与系统两大类。类似于一维连续系统,对应于二维连续系统,有二维拉普拉斯变换;类似于一维离散系统,对应于二维离散系统,有二维Z变换。由于二维连续信号的处理一般不直接进行,而是离散化变为二维离散信号后再处理,所以大量的研究集中于二维离散信号处理,包括二维离散傅里叶变换、二维离散余弦变换、二维离散小波、二维数字滤波等。

在本章中,为了清楚起见,仅讨论二维信号和系统杜锡钰,肖扬,裘正定等.多维上海:数字滤波器.上海:国防工业出版社,1995.肖扬.多维系统的稳定性分析.上海:上海科学技术出版社,2003.Bose N K.Applied Multidimensional Systems Theory.Van Nostrand Reinhold,New York,1981.Dudgeon D E,Mersereau R M.Multidimensional Digital Signal Processing.New Jersey:Prentice Hall,1984.Bose N K,editor and main author.Multidimensional Systems Theory:Progress,Directions,and Open Problems in Multidimensional Systems.D.Reidel Publishing Company,Dordrecht,Holland,1985.Xiao Y,Unbehauen R.Schur stability of polytopes of bivariate polynomials.IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2002,49(7):1020-1023.Xiao Y,Unbehauen R.New stability test algorithm for two-dimensional digital filters.IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,1998,45(7):739-741.Xiao Y,Du X Y.A New Stability Test Theorem of 2-Dimesional Recursive Digital Filters and It’s Application.Proceedings of IEEE 1990 International Symposium on Circuits and Systems,Advance Program,Vol.4,pp2990-2993,May 1-3,1990.Xiao Y,Du X Y,Unbehauen R.Improved 2-D stability margin test for 2-D discrete systems.Journal of Systems Science and Systems Engineering,Vol.7,No.2,pp.228-233.1998.Xiao Y,Unbehauen R,Du X.Sufficient conditions of robust Schur stability for 2-D polynomials.Journal of Systems Science and Systems Engineering,Vol.8,No.3,pp.368-374,1999.Xiao Y.Schur stability of interval bivariate polynomials.Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS20060),pp.I-527-530,Geneva,2000.Xiao Y,R.Unbehauen,Du X.Robust Hurwitz stability conditions of polytopes of bivariate polynomials.Proceedings of 38th IEEE Conference on Decision and Control,Phoenix,pp.5034-5035,AZ,1999.肖扬,吴江,梁满贵.不确定二维多项式的稳定性检验集合.系统科学与数学,2004,24(2):278-281.肖扬,宋明艳,吴江等.二维多项式Hurwitz稳定性的有限检验.北方交通大学学报,2001,25(2):1-4.肖扬.二维离散系统的频域稳定性检验定理.电子学报,1996,24(1):117-11.肖扬.状态空间时滞系统稳定性检验的二维方法.北方交通大学学报,2003,27(5):7-11.Jury E I.Stability of Multidimensional Systems and Related Problem.Ch.3 of Book:Progress in Multidimensional System Theory.S.G.Tzafestas,Marcel Dekker,Boston,MA,1986.O’Connor B T and Huang T S.Stability of General Two-Dimensional Recursive Filters.in Two-Dimensional Digital Signal Processing.ed.T.S.Huang,Berlin:Springer-Verlag,1981.Fettweis A and Basu S.New Results on Stable Multidimensional Polynomials.Part II:Discrete Case IEEE Trans.Circuits and Systems,vol.CAS-23,No.11,Nov.1981.Fornasini E and Marchesini G .Stability Analysis of 2-D Systems.IEEE Trans.on Circuits and Systems,vol.CAS-27,No.12,Dec.1980,pp1210-1211.Kamen E.Asymptotic Stability of Linear Shift-Invariant Two-Dimensional Digital Filters.IEEE Trans.Circuits and Systems Vol.CAS-27,No.12,Dec.1980.Roesser R P.A Discrete State-Space Model for Linear Image Processing.IEEE Automatic Control,Vol.AC-20,pp.1-10,1975.Lu W S and Lee E B.Stability Analysis for Two-Dimensional Systems.IEEE Trans.Circuits and Systems,vol.CAS-30,pp.455-461,July,1983.Yonemoto A,Hiskado T and Okumura K.Accuracy improvement of the FFT-based numerical inversion of Laplace transforms.IEEE Proc.Circuits Devices Syst,2003,150(5):399-404.Bréhonnet P,Tanguy N,VilbéP,Calvez L C.An Alternative Method for Numerical Inversion of Laplace Transforms.IEEE Transactions On Circuits and Systems-II:Express Briefs,2006,53(6):434-431.Chung H Y,Sun Y Y.Taylor series approach to functional approximation for inversion of Laplace transforms.Electron.Lett.,1986,22:1219-1221.Cooley J W,Lewis P,Welch P D.The fast Fourier transform algorithm:programming considerations in the calculation of sine,cosine and Laplace transforms.Journal of Sound and Vibration,1970,12(3):315-331.De Hoog F R.An improved method for numerical inversion of Laplace transforms.Society for Industrial and Applied Mathematics,1982,3(3):357-366.Durbin F.Numerical inversion of Laplace transforms:an efficient improvement to Dubner and Abate’s method.Computer Journal,1974.Vol.17:371-376.Zhang C,Hu S H,Xiao Y,Wang X F.The Application of 2-D Numerical Inversion of Laplace Transform,Proc.of 9th International Conference on Signal Processing,2001.ICSP 2001,pp.60-63.C.Y.Hwang,M.J.Lu.Numerical inversion of 2-D Laplace transforms by fast Hartley transform computations.Journal of the Franklin Institute,336,pp.955-972,1999.Brancik L.Improved method of numerical inversion of two-dimensional Laplace transforms for dynamical systems simulation.9th International Conference on Electronics,Circuits and Systems,2002.Volume 1,2002,pp.385-381.Brancik L.Convergence problems and optimal parameter estimation in FFT-based method of numerical inversion of two-dimensional Laplace transforms.The 2004 47th Midwest Symposium on Circuits and Systems,2004,Volume 1,pp.113-116.Brancik L.Numerical Inversion of Two-Dimensional Laplace Transforms Based on Partial Inversions,International Conference on Radio elektronika,2001.1-4.,这不失一般性,可以将其推广到高维情况。